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Abstract

The ever-increasing volume of data in digital forensic investigation is one of the most dis-

cussed challenges in the field. Severe, case-hindering digital evidence backlogs have become

commonplace in law enforcement agencies throughout the world. The objective of the re-

search outlined as part of this thesis is to help alleviate the backlog through automated digital

evidence processing. This is achieved by reducing or eliminating, redundant digital evidence

data handling through leveraging data deduplication and automated analysis techniques.

This helps avoid the repeated re-acquisition, re-storage, and re-analysis of common evidence

during investigations. This thesis describes a deduplicated evidence processing framework

designed with a Digital Forensic as a Service Framework (DFaaS) paradigm in mind.

In the proposed system, prior to the acquisition, artefacts are hashed and compared with

a centralised database of previously analysed files to identify common files. Moreover, this

process facilitates known pertinent artefacts to be detected at the earliest stage possible

in the investigation, i.e., during the acquisition step. The proposed methodology includes

a novel, forensically-sound entire disk image reconstruction technique from a deduplicated

evidence acquisition system. That is to say, reconstructed disk hashes match the source device

without having to acquire all artefacts directly from it. This enables remote disk acquisitions

to be possible faster than the network throughput. Known, i.e., previously encountered,

pertinent artefacts identified during the acquisition stage are then used for training machine

learning models to create a relevancy score for the unknown, i.e., previously unencountered,

file artefacts. The proposed technique generates a relevancy score for file similarity using

each artefact’s file system metadata and associated timeline events. The file artefacts are

subsequently ordered by these relevancy scores to focus the investigator towards the analysis

of artefacts most likely to be relevant to the case first.
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Chapter 1: Introduction

1.1 Overview

Digital devices are omnipresent and have become an important part of people’s daily lives.

Therefore, digital forensics is not only applied to technological crime such as computer intru-

sion, phishing scams, and so on. Actually, digital evidence is increasingly important during

the processing of many civil and criminal cases, e.g., child abuse, drug activity, financial

crimes, murder, missing persons, death threats, etc. As a result, the number of cases requir-

ing digital forensic investigation is ever-increasing.

In the age of big data, massive amounts of data are produced through people’s everyday

activities. The availability of large-scale potential evidence presents new challenges in digital

forensic investigations. The capacity of storage devices (hard drives, solid-state drives, mem-

ory cards, external storage devices, etc.) is ever-expanding. Besides, the rising prevalence of

Internet of Things (IoT) devices in homes and buildings increase the opportunities to recover

digital traces that are relevant to an investigation [9].

The more data is available, the harder it is to identify fraudulent activity and the malicious

users behind those activities [10]. Severe digital evidence backlogs are faced by law enforce-

ment around the world [11, 12, 13]. Hence, reducing the growing backlog is urgent; as Casey

states “investigation delayed is justice denied” [14]. Data deduplication is a technique for

eliminating duplicate copies of repeating data; it can be applied to the digital forensic process

to reduce the amount of data that must be collected and analysed.

To alleviate the digital evidence backlogs, approaches such as data reduction, data dedupli-

cation, devices triage, file artefact ranking and automated association analysis can be applied

for collecting, preserving and analysing information during an investigation. Previous anal-

ysis results can be preserved into a database, which stores the hash value of the illegal files

that have been classified by forensic experts. Illegal files could be child abuse material (pic-

tures, videos), documents demonstrating financial fraud, and so on. Leveraging previously

analysed data is also important to avoid duplication of effort in re-analysis the same content

or for training machine learning models. This research contributes to an improvement over

the current solutions and proposes approaches to improve the efficiency of digital evidence

processing.
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1.1.1 Challenges of Digital Forensics

The presence of a mixed set of technologies is one factor increasing the complexity of the

problem [15]. Future challenges could include investigation within the smart infrastructure

and smart cities [16, 17]. Digital forensics requires to battle efficiency of process big data and

the ability to processing heterogeneous data.

Digital forensic evidence acquisition speed is traditionally limited by two main factors: the

read speed of the storage device being investigated and the storage device for preserving the

collected data. Big forensic data is a widely discussed topic in the field [18, 19] and it brings

both challenges and opportunities. Expediting the acquisition combined with automated

correlation analysis can solve the data volume issue. This is further complicated by the

variety of data sources.

For example, the acquisition of data from cloud services is complex; the data is often scattered

among different physical or virtual locations and the deployments are various, e.g., Infrastruc-

ture as a Service (IaaS), Software as a Service (SaaS), Platform as a Service (PaaS), etc. IoT

devices further complicate matters, as these are typically connected to cloud servers through

a network and much of the forensically interesting data, e.g., event logs, user activities, etc.

are stored in volatile memory [9]. Powering down these devices can result in inadvertent

evidence destruction.

Technological advancement brings both challenges and opportunities to digital forensics. In

digital forensic research surrounding cloud computing, it could either focused on acquiring

and analysing digital evidence from cloud services or applying cloud computing resources to

processing digital evidence.

1.1.2 Approaches and Technologies for the Problem

Streamlining the digital forensics process model can have a significant effect on digital evi-

dence backlogs. For example, processing less data (data reduction/device triage) combined

with improving the hardware (more computing power) can result in. Data reduction can

eliminate non-pertinent file artefacts through filters created at the earliest stage in the in-

vestigation, such as to remove image file size less than 5KB. The analysis phase requires

automated correlation and prioritisation of file artefacts to reduce the processing time.

• Digital Forensic Process Model

Digital forensic investigative approaches usually are discussed in the context of digital

forensic process models. Novel solutions should be integrated to the existing processes.

For example, Simou et al. [20] designed a concept model of cloud forensic-enabled

services (CFeS) considering cloud forensics are challenging; in their research, cloud

forensic constraints at the stages of digital evidence processing, such as accountability,
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tractability, are defined. CFeS allows investigators to collect data for analysis while

better protecting the system.

For big data forensics, a coordinated process model should be proposed. Digital foren-

sic tools need a new software and hardware framework for large scale forensic pro-

cessing [21]. One practical solution to these problems is supporting more hardware

resources. A solution is proposed to improve the performance by using GPUs for the

most computationally intensive tasks of the indexing procedure [22]. Cloud comput-

ing, a model for enabling convenient, on-demand remote access to a shared pool of

configurable computing resources, can be a solution.

• Data Reduction

Data reduction is required as the data volume and the number of files encountered

during each investigation is ever-increasing, which results in slower digital evidence

processing. Data reduction approaches can be implemented by verifying the metadata

such as file size, file type, file location, etc., to reduce the number of files requiring

expert analysis. Experiment results have proved the effectiveness of forensic corpus

data reduction techniques to eliminate non-pertinent files for faster analysis [23]. In

addition, selective imaging chooses likely more relevant file artefacts from disk and

aids in the decision making for device triage [24]. The higher prioritised devices by

triage should, of course, have whole disk images acquired, because of the importance

of forensic soundness of evidence acquisition [25, 26, 27].

Hash values of file data can also be applied for file identification. Centralised reposito-

ries for preserving previously analysed files can aid the analysis. Leveraging previously

processed digital forensic cases and their component artefact relevancy classifications

can facilitate an opportunity for training automated AI (artificial intelligence) based

evidence processing systems. These can significantly aid investigators in the discovery

and prioritisation of both previously encountered and un-encountered evidence.

• Automated Association/Prioritisation

Automated digital forensic tools are necessary, considering the time and cost-efficiency.

Automated Child Sexual Abuse Material (CSAM) analysis tool can limit investigative

exposure to this content, to avoid investigators working on it at risk for developing

secondary traumatic stress [28].

Manual analysis of large datasets takes too long to arrive at meaningful results. In 2005,

Beebe et al. [29] outlined data mining techniques that could be applied to aid digital

forensic investigations, as terabyte-sized data sets were already challenging analysts

and investigators. In 2019, Karresand et al. [30] pointed out the problem of the large

and increasing amount of data to be processed in digital forensics and proposed an

approach for prioritising relevant areas in storage media. This approach allows an

analysis of the probable position of user data at first without the need for a working

file system.

Machine learning techniques have been applied to assists digital forensics; for instance,

in the triage of seized digital devices [31]. An approach using trained support vector
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machine (SVM) models for ranking digital forensic string search hits was proposed [32].

Machine Learning is often seen as the solution to many big data problems. Automated

evidence processing (leveraging AI-based techniques) shows great promise in expediting

the digital forensic analysis process while increasing case processing capacities [4].

1.2 Research Questions

The central focus of this research is to design and implement methodologies to alleviate the

digital evidence backlogs through centralised evidence storage, processing and analysis. This

research focuses on stored data and file system analysis, which is the most common source of

pertinent evidence. The proposed approach aims to reduce the workload of the investigators

by eliminating repetitive work and automating digital evidence processing.

The research questions are:

• How can investigation efficiency be improved through centralised evidence storage,

processing and analysis?

• How can current research on digital forensic objectives (triage, correlation and priori-

tisation) be improved through technologies such as data reduction, data mining and

machine learning?

• How can redundant analysis on the same digital artefacts be reliably eliminated by

employing data deduplication techniques?

• What impact on the level of automation of digital forensic investigation through com-

bining event-based analysis with filesystem metadata is possible?

1.3 Contribution of this Work

The proposed system enables deduplicated acquisition and forensically sound reconstruction.

Subsequently, the prior artefact is leveraged for training supervised machine learning models

to prioritise file artefacts by their likely relevancy. The premise of the approach is for file

artefact relevancy prioritisation to be facilitated through taking advantage of the data stored

on a centralised, deduplicated digital evidence system from the previous case analysis. The

novelty and contributions of this research are listed as follows:

• A framework for automated test disk image generation is proposed. A prototype is

developed, which externally controls a virtual machine running in VirtualBox. The
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developed tool is used for the test disk image generation required by this research. The

implemented user actions include file creation, access, modification, double click to run

an application, click links in an opened web-page, etc.

• A deduplicated digital evidence processing system is proposed. The system allows dedu-

plicated remote digital evidence acquisition, and detection of illegal files at the acqui-

sition stage. Known benign file artefacts are filtered out and redundant re-acquisition

and re-analysis of previously encountered content are eliminated. Device triage can be

determined by the number of known illegal files detected.

• A novel technique for forensically-sound, complete disk image reconstruction from a

deduplicated digital evidence process system is achieved and validated.

• An approach for automated file artefacts prioritisation is proposed and evaluated on

several emulated investigative scenarios. This approach uses the detected known file

artefacts to train machine learning models for determining the likely relevancy of the

unknown file artefacts on the disk. File artefact timelines and metadata are used as

input to the model.

1.4 Limitations of this Work

This research considers digital evidence acquisition, analysis and data processing. Experi-

mentation and tests are focused on the most popular operating system; namely Windows.

However, this approach can be applied to diverse devices.

This research applies data deduplication and machine learning techniques for reducing or

entirely eliminating repeated processing and analysis of common benign or pertinent digital

evidence. However, the time saved from deduplication varies in each investigation determined

by the data on the seized device. The experimentation conducted evaluated the time saving

across several scenarios.

1.5 Layout of this Thesis

• Chapter 2 presents a comprehensive literature review of the background and related

work of this research.

• Chapter 3 outlines the methodologies for test image generation, deduplicated digital

evidence acquisition and automated file artefacts prioritisation.

• Chapter 4 presents the implementation for test disk image generation and results.
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• Chapter 5 presents the implementation and evaluation of a deduplicated centralised

digital evidence processing system. Test results demonstrate the validity of this ap-

proach.

• Chapter 6 presents the application of a machine learning-based approach for digital

file artefacts analysis. The approach assumes the digital evidence is collected by the

designed deduplicated system. Text can detect illegal files and benign files at the

acquisition stage. The classification of file artefacts is used as a training data set and

applied to train models for determining the relevancy of unknown, file artefacts.

• Chapter 7 presents the conclusion and future work.

1.6 Brief Overview of the Approach

This research discusses the challenges and state-of-the-art in digital forensics. The hetero-

geneity of data encountered in digital forensics requires evidence discovery from a large variety

of devices and data formats. The ever increasing data volumes encountered during investiga-

tion significantly slows down the analysis phase of an investigation (e.g., filtering, indexing,

etc.). Leveraging cloud computing resources and techniques can greatly improve the efficiency

of digital evidence processing.

This research proposes a system integrated with a DFaaS framework, leveraging data dedu-

plication and automated file artefact relevancy determination. The focus of this research

is to address the issue through a more efficient process model; reducing unnecessary data

processing (both during acquisition and analysis) and automated evidence analysis to focus

the investigator towards the data most likely to be pertinent evidence at the earliest stage

possible in the investigation.

Problem: Digital
Forensic Backlogs

Cloud-Based
Framewok

Automated
Association/Prioritisation

Analysis

Big Forensic
Data

Devices and
Data Diversity

Deduplicated digital evidence
processing system 
Forensically sound disk image
reconstruction from the
deduplicated system 
File relevancy prioritisation
Viable automated test disk image
generation

Challenges

Current Approaches This Research Work

Data
Reduction

Figure 1.1: An Overview of the Research Outlined as Part of this Thesis
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Chapter 2: Literature Review

2.1 Introduction

Computer forensics developed as an independent field in the late 1990s and early 2000s

when computer-based crime started growing with the increasing popularity of computers [33].

Modern society increasingly depends on communication networks, mobile appliances, IoT

solutions, cyber-physical system technologies, and cloud-based services [15]. In this chapter,

the state of the art of the field is highlighted including current techniques and methodologies,

digital forensics problems and challenges.

Section 2.2 outlines the concept of digital forensics, digital evidence, the current challenges

of digital forensics and the situation of digital evidence backlogs faced by law enforcement.

Digital evidence originates from various abstraction levels. Autopsy analysis of disk image

is presented for showing the data extracted from the disk image. The challenges resulting in

digital evidence backlogs are also presented.

Purchasing storage media from the second-hand market was an original source of research

data, however, this can no longer be used after the GDRP was released. The lack of shared

digital forensic corpora is a problem for scientific validation of digital evidence [34]. As a

result, testing disk images are typically only generated manually. In Section 2.3, existing test

disk image creation approaches are discussed.

Digital forensic science is very much still in its infancy but is becoming increasingly invaluable

to investigators. A popular area for research is seeking a standard methodology to make the

digital forensic process accurate, robust, and efficient. In Section 2.4, digital forensic process

models are presented. Process models define the methodology for investigation in different

scenarios. They specify phases of digital evidence processing and normally feature phases

including acquisition, analysis and presentation.

In this age of big data, large volume digital forensic cases produce their own problems.

Section 2.7, data deduplication and the existing applications of data deduplication and data

reduction in digital forensics are presented. Applying cloud computing techniques to digital

forensics can contribute to solving the big forensic data problem. In Section 2.6, Hansken,

a cloud-based solution for digital forensics (Digital Forensic as a Service (DFaaS)) system

used by the Netherlands Forensic Institution (NFI) is presented. Section 2.8 presents recent

research on automatic digital forensic analysis. Automated digital forensic analysis techniques

are diverse due to the variety in both types of cases and devices. Machine learning techniques
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have been applied to develop applications for addressing problems in security and digital

forensics. In Section 2.9, the background of machine learning and developed applications in

digital forensics are presented.

2.2 Digital Forensics

Cybersecurity is more focused on the design of secure systems, the prevention and detection

of attacks, whereas, digital forensics deals with the investigation after the incident. That is

to say when cybersecurity fails to protect systems from damage; it requires digital forensic

practitioners to investigate how an incident happened. Many civil or criminal cases, e.g., child

abuse, financial fraud, etc., require digital forensic investigation. With the ever-increasing

integration of technology in day-to-day life, the ownership of multiple devices, such as smart-

phones or laptops, is commonplace. For a forensic investigator, the increase in the amount of

data that any single person can accumulate across several devices can be a daunting prospect.

The increase means longer acquisition times, larger storage requirements and lengthy analy-

sis. All of this time threatens to further extend the current forensic backlog which in some

jurisdictions is already unacceptably long. This can leave some cases without vital evidence,

case-progressing for years[12].

Digital evidence could be any data restored within digital devices, including files, file frag-

ments, digital audio, digital video, cell phones, digital fax machines, etc. [35]. As the preva-

lence of smart devices, digital evidence could also from smart vehicle [36], smart city [17].

Digital evidence can be useful in a wide range of criminal investigations, such as network-based

attacks, child abuse, drug dealing, etc. Digital forensic investigations are various depending

on the device type (e.g., computer, smartphone, IoT) and data format (e.g., pictures, docu-

ments, database, network packets). Several process models have been proposed to deal with

different case scenarios. The most common steps in the digital investigation are acquisition,

examination, analysis and presentation. The subsequent effort on process model evolution is

presented in Section 2.4.

Cloud computing can be thought of from two perspectives; one is to regard it as a target to

be investigated and the other is to utilise it for powerful investigative analysis. For example,

Lanterna et al. [37] present the work on the analysis of deduplicated file systems; Scanlon [38]

has a discussion on applying deduplication to the digital forensic framework. As Lee et

al. [21] outline the majority of studies have been focused on the former, which considers

cloud computing services as forensically pertinent targets.

It is also important to improve the automation of forensic processes [39]. Existing tools

designed for automatic digital forensic investigation are mainly focused on the extraction of

data from storage media, which often cannot directly answer the question asked by detectives

during an investigation. As the case types are various, forensic analysis requires some degree
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of critical thinking and implementation of the scientific method [40]. Investigators have to

discover the story manually, which is often arduous. Lack of IT professionals conducting the

digital forensic investigation in law enforcement is another problem encountered with manual

analysis [41].

Machine learning techniques offer a data-driven approach, which results in a more dynamic

solution compared with hardcoded scripts. Researchers in many fields look to machine learn-

ing to improve the effectiveness and efficiency of their solutions; the same is true in the

digital forensics and cybersecurity domains. For example, machine learning has been em-

ployed in malware classification [42], establishing forensic analysis priorities [43], automated

categorisation of digital media [31], etc.

2.2.1 Source of Digital Evidence

Digital evidence is electronic information stored or transmitted in binary form [44]. Data

extracted from seized devices can be used as digital evidence. The role of the seized devices

could be various, determined by the case under investigation. For example, Li et al. [45]

refined the roles of IoT investigation into IoT as a target, IoT as a tool, and IoT as a witness.

It is also true of other types of devices during an investigation. For example, in a cyber

attack investigation, the suspect’s devices could be a witness or tool, or the victim’s devices

could be the targets.

With the increasing amount of data, the types of evidence encountered has also increased [46].

From a variety of devices (e.g., PC, laptops, smartphone, tablet, etc.), data can be extracted

as digital evidence from three abstract levels:

• Physical level: the block slack and unallocated space could contain information of

deleted files;

• File system level: contains information such as files’ indices, files’ physical locations

and allocated blocks;

• Operating system level: contains system and application files, log files, and user-created

files.

Pertinent file artefacts on operating system level include; 1) system and application files,

which offer information such as version and updating situation to investigators; 2) log files

(e.g., registry, cache, history), which record account information and all the user’s actions;

3) user-created files usually are documents, multimedia files, content or metadata can help

reconstruct what the device was used for, e.g., images and videos are common digital evidence

for child abuse cases.

Cloud forensics and IoT forensics are often mixed with network forensics, as data is frequently

transmitted by a network to assure their functionality. Cloud forensic investigation could
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require digital evidence acquisition from client, server and network. IoT forensics could

include evidence collected from cloud servers and services, network and physical devices.

The demand for cloud computing is ever increasing [47]. There is no single central location

for files, database artefacts, system artefacts and logs; thereby creating great challenges to

identify, lock (to ensure integrity), and retrieve them [48]. The evolution of cloud computing

forensics is in its infancy [49]. Currently, there is no standard method or toolset for conducting

cloud investigations, or for evaluating and certifying proposed tools.

Watson et al. [50] states the high-level challenges associated with performing digital forensics

on IoT devices. Due to most existing forensic tools having been developed for computer or

mobile phone forensics, the onboard data storage in IoT devices is often is not accessible to

these tools. Furthermore, the cumulative dataset for a device may exist in multiple locations.

Even if the data can be acquired, due to the different file systems and file formats, it may

not be readable or accessible with existing tools.

Big data is a blend of structured as well as unstructured data. Big data is characterised by

the five Vs, which are variety, velocity, volume, veracity and value [51]. The age of big data

opens new opportunities in various fields, it also introduces new challenges in digital forensics

investigations [10].

Continuous best practice evolution leads to difficulties in digital forensic investigation. The

challenges of digital forensics include the increasing popularity of digital devices and the het-

erogeneity of the hardware and software platforms being used [15]. Furthermore, Montasari

et al. [16] outline challenges in digital forensics such as anti-forensic techniques, video and rich

media, whole drive encryption, wireless, virtualisation, live response, distributed evidence,

borderless cybercrime and dark web tools, combined with a lack of standardised tools and

methods, usability and visualisation.

2.2.2 Mobile Forensics

NIST defines mobile forensics as “the science of recovering digital evidence from a mobile

device under forensically sound conditions using accepted methods” [44]. The proliferation

of mobile devices (i.e., smartphones and tablets) on the consumer market has caused a growing

demand for forensic examination of the devices. In addition, law enforcement is much more

likely to encounter a suspect with a mobile device than before in either criminal or civil cases.

Over time, commercial tools were developed, which allowed analysts to recover phone content

with minimal interference and examine it separately. Mobile forensic toolkits are available

in the market including Oxygen forensics, Cellebrite’s Universal Forensic Extraction De-

vice (UFED), and XRY Forensic Examiner’s Kit [52]. These tools help to extract certain

informative data. The basic information obtained from mobile phones, despite the device

differences [53, 54, 52]:
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• Phone Storage Data

• Messages: SMS, MMS, E-Mails

• Social Media Data

• Call Records: Missed/Outgoing/Incoming Calls

• Multimedia Data: Photos, Videos and Audio files

• Communication Network Data

As Cahyani et al. [55] outlines, existing mobile forensic research can be classified into (1) ex-

amining the capabilities of acquisition methods, (2) undertaking detailed forensic procedures,

and (3) conducting in-depth forensic analysis of mobile apps or mobile operating systems.

As an example, Sathe et al. [56] presented their experimentation on the data extracted from

Samsung Galaxy Grand Duos GT I9082 mobile device by using AFLogical OSE, Andriller

and Wondershare Dr. Fone for Android tool. The results shown below demonstrate the

difference in the data extraction from each tool:

• AFLogical OSE : messages, call logs;

• Andriller Tool : messages, call logs, web browser, wifi password, accounts;

• Wondershare Dr. Fone for Android : messages, call logs, contacts, images, audio, video,

documents, WhatsApp message and attachments. (both deleted and undeleted data)

Al et al.[57] present a model for processing data Android mobiles; experimentation presents

the application of commercial tools for data extraction and analysis from Samsung Android

4.2.2. However, in-depth analysis of all seized devices during an investigation could take a

quite long time; triage on mobile devices can address this issue. In 2011, Marturana et al.[58]

proposed an automated approach for mobile devices triage, which takes advantage of Data

Mining and Machine Learning theories.

2.2.3 Cloud Forensics

Cloud computing has gained popularity because it offers various benefits including conve-

nience, large capacity, scalability, and on-demand accessibility. However, attacks being dis-

covered and exploited in various cloud-related crimes have led to a need for digital forensics

in the cloud environment [59].

Precise definitions and understanding of terms related to new technologies can be various

at times. To better understand cloud forensics, such as its definition, scope, challenges,
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opportunities as well as missing capabilities, a survey among digital forensic experts and

practitioners was conducted by Ruan et al.[60]. According to the results, the respondents

believe that cloud forensics is not Internet forensics or classical computer forensics, nor a

brand new area. It is rather a mixture of traditional forensic techniques and their applications

in a cloud computing environment. Pichan et al. grouped the investigation into three areas,

(i) Client forensics (ii) Cloud forensics, and (iii) Network forensics [48].

As cloud-based file synchronisation services have become very popular, which offers a re-

mote backup of data paired with the automation of data across multiple devices. In 2014,

a methodology was outlined [61] enabling the recovery of remote digital evidence from de-

centralised file synchronisation network, as a result, extends the digital evidence acquisition

window. In 2018, Teing et al. [62] presented the types and locations of CloudMe residual

artefacts on desktop and mobile client devices running Windows 8.1, Ubuntu 14.04.1 LTS,

Mac OS X Mavericks 10.9.5, iOS 7.1.2, and Android KitKat 4.4.4.

Experimentation of acquiring forensic evidence from IaaS cloud computing has been con-

ducted to test the current tools, such as EnCase, FTK, etc. The experiments assume that

the cloud consumer is the victim of the crime and the plan-tiff in the investigation [63]. It is

more challenging to conduct an investigation of suspect’s cloud-stored data.

For mitigating the dependency on Cloud Service Provider (CSP), acquisition of data from

the cloud could also be conducted through monitoring the communication between client and

cloud server. Alex et al.[64] proposed a cloud evidence collection model. The model builds

a forensic monitoring plane (FMP) between the client and cloud service provider, which

monitoring tool forwards the request to the server and the response to the client. And then

FMP sends the collected data to the forensic server.

Event reconstruction in the cloud is challenging due to its multi-tenancy and the huge scale

of events generated per unit time [65]. A variant of the popular log aggregation algorithm

Leader-Follower (LF) algorithm called LFV 1 and LFV 2 was proposed by Raju et al. [65, 66]

for cloud log event reconstruction.

2.2.4 IoT Forensics

From connected cars to traffic lights, home security systems, connected toys and smart speak-

ers, the IoT market has ballooned in recent years. According to Cisco1, the number is

predicted to reach 31 billion connected devices by 2020 and 75 billion devices by 2025. Ac-

cordingly, the importance of IoT forensics will increase. IoT forensics is challenging as it is a

mixer of devices level forensics, network forensics and cloud forensics.

Due to the heterogeneity, customised forensic tools are required to acquire and analyse data

from certain devices, rather than the typical commercial forensic tools such as EnCase and

1https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.html
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FTK [45]. Furthermore, IoT forensics requires to consider data provenance and the in-

teraction between IoT and cloud servers, network forensics tools or methods are generally

applied [45]. Cloud forensics also plays a key role in IoT forensics, especially since the data

generated from IoTware and IoT networks are already being, or will increasingly be stored,

on cloud locations [59].

In 2017, Kebande et al. [67] proposed a post-event response mechanism to these malicious

attacks in cloud-based IoT infrastructures. For example, smart, connected products and

IoT in many organisations can result in increased efficiency and improved cash flow. The

proposed Cloud-Centric Framework enables to isolate big data as forensic evidence from IoT

infrastructures [67].

Decentralised methods are applied for IoT device investigation. To address the problems

and limitations of digital forensics in the IoT environment, Ryu et al. [68] proposed a frame-

work using blockchain technology in 2019. This framework stores IoT device activity in the

blockchain as transactions to assure the integrity and security of data.

2.2.5 Digital Forensic Artefacts Example

This section presents an example of disk image forensic analysis using Autopsy, an open-

source digital forensic tool.

Autopsy2 is a GUI (Graphical User Interface) based program that allows analysing hard

drives and smartphones efficiently. The SleuthKit is a collection of command-line tools and

a C library that allows to analyse disk images and recover files from them. It is used behind

the scenes in Autopsy and many other open-source and commercial forensics tools. pytsk is

a Python binding for the SleuthKit and is used for file system metadata extraction in this

research work.

Figure 2.1 illustrates the information and analysis of a hard drive investigation by Autopsy.

The data source is a Windows 7 disk image in raw format. After selecting the disk image,

the available models to process the extracted data are shown.

Autopsy supports the standard features common in digital forensics, such as:

• Recent activity

• Hash calculation and lookup

• Indexed keyword search

• Registry analysis

• Web artefacts

2https://www.sleuthkit.org/
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• Email

• Carving

To combat big forensic data, autopsy stores all the analysed data in the past (data of previ-

ously analysed case) to avoid reanalysis of digital evidence. Local and centralised repositories

are employed to store the historical data record. As a result, unique features are offered such

as:

• Multi-user collaborative cases

• Analysis-driven acquisition

• Triage

• Timeline

• Communications

Autopsy frequently adds new third-party modules and encourages developers to write new

modules. For example, plaso (log2timeline), the state of the art on timestamp extraction, is

on the ingest modules list. plaso is also used by this research work and more discussion on

palso is presented in Section 2.8.2 (timeline analysis).

Figure 2.1: Autopsy: Ingest Modules
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After adding the data source and the selected ingest modules finish their analysis, the results

acquired are presented to the investigator, as shown in Figure 2.2.

Figure 2.2: Autopsy: Data Extraction, Views and Results

The data extracted from the disk image is shown in Data Sources and Views, and the auto-

mated analysis results from the selected ingest models are in Results:

• Data sources show the files in a tree structure same as the file system. There are a

number of volumes (four volumes in this disk image, the first and fourth are unallo-

cated.).

• Views presents files in folders by their metadata. Files are into different categories by

the extension and MIME type. Deleted files are also shown. Files are also classified

according to the size.

• Results presents the extracted content, keyword hits, hash-set hits, etc.

In the results, there is a folder called interesting items. Files are shown in this folder if their

hash matches the illegal files preserved in the local repository. If the central repository is

applied, then the extracted data will be checked with Autopsy’s preservation of the previous

results, such as hashes, emails, USB device IDs, wifi SSID, ICCID, domains, etc. The tags

from past encounters can be employed for deprioritising the non-pertinent benign artefacts.

The topic of centralised digital evidence processing and research is discussed in Section 2.6

and Section 2.7.
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A List of Tools for Different Examination Targets

As there are the many different forensic objects, a number of commercial tools and developed

scripts are typically applied during an investigation. A list of common digital forensic tools

designed for different types of examined targets is outlined below [69]:

• Memory Forensics: Volatility, WindowsSCOPE, RAM Capturer, Magnet RAM Cap-

ture, and Memoryze;

• Mobile Device Forensics: CelleBrite UFED, XRY, and Oxygen Forensic Suite;

• Network Forensics: Wireshark, Network Miner, Xplico, and E-Detective;

• Computer Forensics: EnCASE, FTK, Sleuth Kit Autopsy, TCT, and DEFT.

These GUI based forensic tools present extracted data in a consumable fashion and allow the

searching of the artefacts by keyword or time span. However, the analysis from each tool is

different and usually cannot be automatically integrated together.

2.2.6 Digital Evidence Backlogs

According to the report by The Irish Times in January 2020, the backlog in An Garda

Siochana is 2.5 years and the need for new technologies for online child abuse investigations is

severely needed . A practitioner survey conducted by Sanchez [70] in 2019 shows participants

encountered limitations in their workload (20.55%), time (17.81%), and resources (10.96%);

the lack of investigators, time, and advanced hardware and tools, to process and analyse data

continuously increases backlogs.

All over the world, each digital forensics case can encounter efficiency problems due to the

amount of data needed to be processed in the analysis stage, the amount of data needed to be

stored from each acquisition, the speed at which the acquisition can be completed, and the

automated of finding blacklisted files. These problems result in the backlog of cases caused by

the time taken to analyse the data collected from each case. Digital evidence backlogs have

been outlined as a challenge worldwide [14, 71, 72]. The average backlog in digital forensic

laboratories around the world was from 6 months to 1 year in 2009 [14]. In the UK, the most

severe example saw one case being delayed by more than 21 months in 2015. The reasons for

backlogs are various; there are already solutions being proposed by researchers to tackle this

problem.

In the not-so-distant past, most cases involving digital forensic investigation involved crimi-

nals using computers, networks or other IT infrastructure as a tool for conducting their crimes.

2https://www.irishtimes.com/news/crime-and-law/garda-needs-new-technology-for-online-child-

abuse-investigations-1.4138583
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At that time, the set of devices requiring analysis usually consisted of a single computer and

the cases involving digital investigation were infrequent. Society has become increasingly

reliant on a variety of digital devices. As a result, there is a massively increased need for

expert digital forensic analysis across a range of cases, and a multitude of devices requiring

analysis per case has become commonplace.

The factors ultimately leading to the mounting digital forensic backlog commonly encoun-

tered in law enforcement [12] include: (i) the increasing number of cases involving digital

investigation; (ii) the number of digital devices requiring analysis is also increasing; (iii) the

storage volume of each device is growing; (iv) the diversity of digital devices and the vari-

ous form of storage formats, file systems, e.g., Internet-of-Things devices, wearables, cloud

storage, etc. Each of these introduces additional complexity to the digital forensic process.

2.3 Digital Forensic Test Images

The generation and maintenance of sufficiently detailed and documented test datasets is one

of the main challenges of testing in digital forensics [73]. Grajeda et al. [74] provides an

overview of publicly available datasets for researchers in digital forensics, and outline the

reasons why some researchers prefer not to share their datasets. The case for standardised

corpora is made by Garfinkel et al. [75], with the primary motivations being reproducibility

and education. Hard disk image from many Digital Corpora is no longer available with

respect to the General Data Protection Regulation (GDPR)3 legislation. As a result, a

common alternative approach is for educators and tool validators to spend significant time

creating customised data sets.

Al Fahdi et al. [76] note that the public availability of forensic cases is “very limited”. In

their work, they make use of two publicly-available cases. The first is “Hunter XP”, which

provided as a training case for the EnCase digital investigation product. The other was a

simulated hacking case that was artificially generated by National Institute of Standards and

Technology (NIST) as part of the CFReDS project4. They also gained access to two further

cases privately, which required non-disclosure agreements to be signed. This emphasises the

level of difficulty associated with obtaining realistic cases for analysis and distribution for

educational purposes.

As noted by Woods et al. [77], the small number of available corpora means that solutions to

standard datasets are frequently available online, potentially undermining the effectiveness

of assessments and proficiency testing. In these scenarios, it is desirable that new, unseen

challenges be posed to ensure the integrity of the process.

3https://gdpr-info.eu/
4http://www.cfreds.nist.gov
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2.3.1 Current Available Disk Images

The problem of providing realistic data for digital forensics education has resulted in a num-

ber of techniques being employed by the educator. Moch et al. [78] outline three existing

approaches to the creation or acquisition of digital forensic datasets or viable disk images:

• Perhaps the most widespread method is the manual creation of disk images. Here, an

instructor creates a disk image that contains specific evidence for students to find. This

has the advantage that the precise evidence is known to the instructor and can be used

for evaluation purposes. Additionally, there is no requirement to wait for an interesting

activity to occur in a natural setting, as the instructor is free to perform/emulate any

actions that are desired. However, creating these images is a very time-consuming task,

particularly given the requirement to ideally provide realistic wear and depth.

• A honeypot involves connecting a computer to a network with the express intention

of it being attacked and compromised [79]. By recording the activities of attackers,

interesting disk images can be created. However, the majority of attacks are automated,

and the quantity of images that feature manual attacks for students to study is low.

Due to the low quantity of interesting examples available, analysis results can frequently

be found online. From a suitability standpoint, the required analysis of these honeypot

generated challenges is often at too high a difficulty level for many learners[77].

• A fruitful source of realistic data is second-hand hard disks. This approach results in

valuable data on naturally occurring phenomena on disks, as the disks have typically

been in use by a real user over a longer period of time than an instructor can dedicate

to the manual creation of an image [80]. Pre-used hard disks are the source of the Real

Data Corpus, assembled over a number of years by Garfinkel [81, 82]. This forms part

of a 30TB collection of research corpora, which also includes items such as network

packet traces, known malware and a million document corpus gathered from the *.gov

TLD. One drawback of this approach is that it does not include materials relating to

real crimes that could be used for training purposes [83]. Additionally, the use of data

belonging to real users raises a number of legal data protection issues. As the data

is generated by real users, privacy law (which greatly varies by jurisdiction) must be

taken into account, particularly when redistributing images. Images may also contain

copyrighted materials (including the operating system and software) or illegal files.

2.3.2 Automated Disk Image Generation Approach

In 2009, Moch et al. [78] discusses the development of Forensig2, which is subsequently

further evaluated in [84] in 2011. Forensig2 allows automated artefact generation of both

the hardware and software level, i.e., it can programmatically configure the virtual machine
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in QEMU 5, including the CPU, network, disks, etc. It can also carry out actions within the

VM, including configuring partitions, copying files locally and remotely, and also various other

operating system level actions (on Linux), such as installing software (using the command

line). This work introduces many of the concepts to be taken forward in any automated

disk image generator, i.e., logging of actions performed to use as ground truth, the need for

extensibility, and the concept of reproducible randomness. However, it is difficult to see how

the approach could realistically synthesise all of the actions on a Windows system caused

by for example a user opening a file, which includes numerous registry artefacts, link file

creation, jumplist entries, potentially associated browser artefacts, etc. This limited ability

to generate artefacts for a GUI based OS (Operating System) is acknowledged by Moch et

al. [84].

Yannikos et al. [85] present ‘model-based generation of disk images’, which focuses on creating

a formal model of the scenario to be built. Practically, the actions that were achieved were:

creating file systems, creating and deleting files, writing raw data to a disk, downloading a

file from the Internet, and disk image import/export. This would be very effective for file

system level interactions, but to generate a realistic disk image that could be used to teach

forensic investigation techniques at all levels of abstraction, operating system-level artefacts

would also be needed and far higher-level operations would need to be emulated.

2.4 Digital Forensic Process Model

The first digital forensic process model proposed contains four steps: Acquisition, Identifica-

tion, Evaluation and Admission. Since then, numerous process models have been proposed

to explain the steps of identifying, acquiring, analysing, storage, and reporting on the evi-

dence obtained from various digital devices. In recent years, an increasing number of more

sophisticated process models have been proposed. These models attempt to speed up the

entire investigative process or solve various problems commonly encountered in the forensic

investigation.

The diversity of devices and sources of digital evidence results in a corresponding diversity

in digital forensic process models [8]. There is no single, universal process model suitable

for all types of investigation. Reducing the volume of data for arduous, manual analysis will

speed up the entire investigative workflow and can significantly aid in alleviating the digital

forensic backlogs all too common in law enforcement agencies throughout the world [38].

Even though digital forensics is a relatively new research area, it has already made significant

progress. The progress is not only from a technology perspective, such as tools to collect and

analyze digital evidence but also with the improvement of methodology. In digital forensics,

a process model is a methodology to conduct an investigation; a framework with a number of

5QEMU is a generic and open source machine emulator and virtualiser. https://www.qemu.org/
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Figure 2.3: Different Types of Digital Forensics

phases to guide an investigation. Generally, process models were proposed on the experience

of previous work. Due to the variety of cases, e.g., cyberattacks conducted by IT specialists,

civil cases in a corporation, or criminal cases, different investigators tend to follow differ-

ent methods in their investigative process, there is no standard workflow in digital forensic

investigation.

A standard methodology in digital forensics investigation consists of a definition of the se-

quence of actions necessary in the investigation. A framework, if it is too simplistic or has

fewer phases, might not provide much guidance to the investigation process. A framework

with more phases and each phase with sub-steps, with more limitation of its usage scenario,

may prove more useful. Even though it is almost impossible to design a perfect process

model that is able to deal with any investigation, an ideal framework should be general,

which means that it could be applied to as many cases as possible. Furthermore, considering

that techniques evolve so fast, a well-defined framework should also with the capability to

adopt new techniques in the process of investigation.

Numerous process models have been proposed in the current literature. Generally, each

framework attempts to provide a methodology for a specific area and these process models

have broadly similar approaches. The earlier research is more concentrated on defining the

whole process of digital forensic investigation, significant process models had been listed and

discussed in the paper [86]. More recently, process model research centres around solving more

specific issues in particular cases or focus on a single step (evidence collection, preservation or

examination, analysis). The triage model [41, 87] is effective for cases that are time-sensitive.

By employing digital forensics triage, investigators could discover pertinent evidence and the

police could get leads about the criminal sooner instead of having to wait for the whole report

which could take weeks months or longer.
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2.4.1 Digital Forensic Framework in Initial Phase

At the turn of the century, it was still the early days of research on digital forensics and digital

forensic process models. Initially, one of the most urgent issues in digital forensics was to

define a process model to make the entire investigative process consistent and standardised.

A number of general digital forensic processing models have been defined. Most of these

frameworks define a group of necessary steps in a whole investigation process, and the models

were refined over time. The later models improve upon the former ones by including some

additional steps or defining sub-steps of the process models - making each step more precisely

defined.

The traditional framework had been refined and formed a number of novel frameworks. Some

inheritance relation among the existing frameworks listed below (see Figure 2.4):

• DFRWS model (Palmer et al. 2001)→ SRDFIM (Agarwal et al. 2011)

• DFRWS model (Palmer et al. 2001)

→ An Abstract Digital Forensics Model (Reith et al. 2002)

• IDIP (Carrier et al. 2003) and DCSA (Rogers 2006)

→ Triage Peocess Model CFFTPM (Rogers et al. 2006)

• Integrated Digital Investigation Process (IDIP) (Carrier and Spafford 2004)

→ Enhanced Integrated Digital Investigation Process(EIDIP)

(Baryamureeba and Tushabe 2004) [88]

• Integrated Digital Forensic Process Model (Kohn et al. 2013)

→ DFaaS Process Model (van Baar et al. 2014)

The focus of these models is on what phases should be included in the investigation, the

sequence of each phase and the definition of key concepts. The fundamental questions were

answered by a range of research on digital forensics process models by Palmer et al. [89], Lee

et al. [90], Reith et al. [91], Baryamureeba et al. [88], Beebeet et al. [92].

Lee et al. [90] proposed a Scientific Crime Scene Investigation (SCSI) model for digital foren-

sic investigation in 2001. Ciardhuáin [93] criticises SCSI model is not a systematic digital

forensic process model, because it only focuses on physical crime scene investigation and

lack of describing on digital criminal scene investigation. Kohn et al. [86] explained that

the physical crime scene investigation process can be adapted to digital crime scene inves-

tigation. An Event-based Digital Forensic Investigation Framework separates the concepts

of the physical crime scene and the digital crime scene, collecting digital devices from the

physical crime scene and then obtaining digital evidence from the digital devices’ storage [94]

in 2004. An Enhanced Integrated Digital Investigation Process (EIDIP) model was proposed

by Baryamureeba and Tushabe in 2004 [88]. EIDIP model is based on IDIP, by introducing

a traceback phase to address the problem of having to reconstruct twice in IDIP.
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Figure 2.4: Digital Forensic Framework in Initial Phasea

aDu, X., and Scanlon, M. (2017). Evaluation of Digital Forensic Process Models with Respect to

Digital Forensics as a Service, 16th European Conference on Cyber Warfare and Security (ECCWS),

Dublin, Ireland.

2.4.2 Refined Digital Forensic Process Models

Merely following a general process model is often not specific enough to handle the broad range

of cases typically encountered by law enforcement. The criminal could be an IT specialist

and conduct advanced cybercrimes, CCTV cameras’ storage may need to be analysed, or

data leakage in a corporation, etc. All of these different situations could require bespoke

methodologies.

After the general process procedure was clearly defined, researchers started working on spe-

cific issues that are more detailed. For example, 1) refining a process model by making an

improvement at a specific step of the investigation; 2) dealing only with a specific category

of cases, such as network forensics, mobile devices forensics, etc.; 3) Triage models [87, 41]

outline specific processes for time-sensitive cases, such as child abductions, missing person

cases, etc.
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The phases and subphases of each process model are shown in Figure 2.5 below:

• Extended Model of Cybercrime Investigation - In 2004, a number of process models had

already been defined. However, each did not include a significant aspect of cybercrime

investigation itself. An extended model of cybercrime investigation was proposed [93].

In general, it is waterfall fashion and activities are conducted in sequence. It still

allows iteration in some part of the investigation, for example, the iterative process of

“examination - hypothesis - presentation - proof/defence”.

• Digital Forensic Triage Process Model - In some special cases, such as kidnaps and

hostage rescue, acquiring clues from digital devices immediately is crucial, or some

other cases such as robbery, crucial information is required as soon as possible to

increase the likelihood of catching the criminal before they have escaped to another

country. Often traditional models are insufficient for this use case - potentially taking

weeks or months to get results. Tiered models are designed to expedite situations like

this. Considering traditional models are designed to guide the entire investigation, a

triage process model was proposed to deal with time-sensitive cases [87]. This model

focuses on the crucial first few hours of an investigation.

• Digital Forensic Model Based on Malaysian Investigation Process - This model is no-

table in that it is focused on the data acquisition process, including more detailed

handling on live data acquisition and static data acquisition in cybercrime investiga-

tion (Perumal 2009) [95].

• The Systematic Digital Forensics Investigation Model - This model is focused on com-

puter frauds and cyber-crimes, which is helpful in evidence dynamics and reconstruction

(Agarwal et al. 2011) [35].

• Integrated Digital Forensic Process Model - This model is the most recent proposed

process model which including a relative generally digital forensic investigation (Kohn

et al. 2013) [86].

2.4.3 Recent Digital Forensic Models for Handling Mod-

ern Advancements

Some new technologies result in new problems hindering digital forensics investigation. Cloud

computing makes evidence collection more difficult; Internet of Things adds a variety of new

device and storage forms; more digital devices connected into the Internet result in an ever-

increasing volume of data. In recent years, research on process models is more focused on

integrating other technologies, such as data mining, to support the original models, or propose

novel process models to solve the issues caused by these new technologies.
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Figure 2.5: Digital Forensics Frameworks Focusing on a Specific Use Casesa

aDu, X., and Scanlon, M. (2017). Evaluation of Digital Forensic Process Models with Respect to

Digital Forensics as a Service, 16th European Conference on Cyber Warfare and Security (ECCWS),

Dublin, Ireland.

Some recent models, as outlined in Figure 2.6, include:

• An integrated conceptual digital forensic framework for cloud computing by Martini et

al. [96].

• Data reduction and data mining framework by Quick et al. [97].

• IoT Based Digital Forensic Model by Perumal et al. [95].
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Figure 2.6: Recent Digital Forensic Models for Handling Modern Advancementsa

aDu, X., and Scanlon, M. (2017). Evaluation of Digital Forensic Process Models with Respect to

Digital Forensics as a Service, 16th European Conference on Cyber Warfare and Security (ECCWS),

Dublin, Ireland.

2.5 Triage Process Model

With the proliferation of digital evidence, the data volumes encountered in investigations

is a significant challenge faced by law enforcement agencies. An efficient way is process-

ing the significant relevant evidence first. The triage process model has been proposed to

tackle the most critical information first to help acquire the most valuable trace of time-

sensitive cases [87]. It allows to timely identification, analysis, and interpretation of digital

evidence. Currently, the prioritisation of device acquisition and processing at a crime scene is

determined by the investigative officer. As more Artificial intelligence (AI) based techniques

are developed, on-scene preliminary inspections could quickly focus the analysis towards the

devices most likely to contain case-progressing information first.

Triage methods and tools can help address the issue that the proliferation of digital-based

evidence. Hitchcock et al. [41] presented their work on the training of front-line personnel

in the field triage process. By employing digital forensics triage, investigators could discover

pertinent evidence and the police could get traces or clues about the criminal sooner instead

of having to wait for the whole report which could take several months or even years. An

enhanced triage process model outlines that training digital forensic first responders to work

at the crime scene can solve the problem of the shortage of digital forensic specialists in law

enforcement [41].

Triage is essential, especially for mobile devices, because it carries more and more intimate

information than ever. Mislan et al. [98] states the requirements for on-scene triage tools,

includes user-friendly design, warning before taking any action, accuracy, accessible data

format, etc.
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2.5.1 Digital Device Triage Tools

For time-sensitive cases, pertinent information acquired from digital forensics has its greatest

value at the earliest stage of the investigation. Triage is a process whereby devices and

artefacts are ranked in terms of importance or priority [87]. Much work has been done in

the area of digital forensic triage in an effort to improve the overall process [70]. A digital

forensic triage process model was proposed to use during the investigation by Rogers [87].

The importance of files varies in different types of the case; CSEM, drug activity, financial

crimes, etc. The approach for triage usually stems from practical experience.

The triage process usually happens after a quick, preliminary analysis of devices at the crime

scene, then a more in-depth analysis is performed in the digital forensic laboratory to identify

more relevant evidence. When multiple devices are involved in an investigation, triage can

reduce the workload. Prioritisation of devices to be examined is defined as a sub-phase in

the “Behavioural Digital Forensics Model”, proposed in 2018 [99].

A variety of triage tools has been designed and implemented. Tools for devices triage could us-

ing the information about user profiling [43], or synchronisation records between devices [100];

some other research focus on triage on mobile devices [58, 58, 101].

Grillo et al. [43] propose a methodology and a tool to support fast computer user profiling

building a wider view for investigators to prioritise seized hard drives. Data extracted from

devices for user profiling are applications installed, configurations of the machine, percentage

statistic of the type of files found on the disk and so on. Device users are categorised as:

occasional user, chat-internet user, office worker user, experienced user, hacker user.

Traditional triage approaches require access to each seized device to perform a general exam-

ination to decide whether the device is high or low priority. Hargreave et al. [100] proposed

an approach that exploits synchronisation features to determine if a device potentially con-

tains useful information. This can help avoid the requirement for access and acquisition of

all encountered devices. The authors present a summary of artefacts that can be used to

extract synchronisation information, such as Browsers, Communication Apps, Social Net-

working, Media/Video, Note-taking apps, Photos and Cloud Storage. The developed tool,

SyncTriage, creates an output form displaying information about the discovered devices, such

as name, make, model, and operating system, etc. Besides, a “universal timeline” is created

combining events from all extrapolated devices for device correlation at a particular time.

With the increasing significance of mobile device forensics, Marturana et al. [58] proposed an

approach for device prioritisation leveraging data mining and machine learning theory. This

work presents the result of a study concerning mobile phone classification in a real child abuse

investigation case. The features used consisted of the phone model (GSM or smartphone),

phone contacts, calls made, text messages sent/received/read, number of video/audio/photo

files, URL, email and memos. The experimentation tested the performance on the feature

value represented as numeric (a number) and category (the number is low, medium or high).
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In subsequent work, Marturana et al. [31] expanded the triage approach to detect the device’s

relative importance using features from 1) the timeline of events, 2) the crime’s specific fea-

tures, and 3) the suspect’s private sphere (habits, skills and interests). The experimentation

in this work was conducted on a copyright infringement and a CSEM exchange case. The

dataset applied consisted of 23 cell phones for the CSEM case with 13 digital media files and

45 copyright infringement-related features. A result of 99% correctly classified samples on

both cases was achieved.

McClelland et al. [101] focused on improving the classification accuracy of the previously pro-

posed device classification approach. This approach improves the classification performance

through feature manipulation techniques such as feature weighting and feature reduction.

The experimental data is from digital devices already examined by the Italian Postal and

Communication Police [58, 31], and the M57-Patents corpus6 – based on storage drives pur-

chased on the secondary market.

2.6 Cloud-based Digital Forensic Framework

In the last decade, cloud computing has emerged as a disruptive technological concept, and

most leading enterprises such as IBM, Amazon, Google, and Microsoft have set up their own

cloud-based services. In the field of digital forensic investigation, moving to a cloud-based

evidence processing model would be extremely beneficial and preliminary attempts have been

made in its implementation. Moving towards a DFaaS model would not only expedite the

investigative process but can also result in significant cost savings – freeing up digital forensic

experts and law enforcement personnel to progress their caseload.

Even though cloud computing has become prevalent across many industries, there is limited

literature on its use and advantages from a DFaaS perspective: Lee et al. [21]; van Baar et

al. [102]; Wen et al. [103]. In this section, the current research on DFaaS will be discussed.

2.6.1 DFaaS Framework

Different cloud computing service models - IaaS, SaaS, PaaS - offer various service for its user.

DFaaS can be described as an approach applying cloud service model to forensic investigation

to build a centralised evidence process system.

Cloud-based digital forensics is still a relatively new approach while it could have huge po-

tential to improve the efficiency of digital forensic investigations. The concept “Forensic

Cloud”, a work environment for investigators without special forensic tools knowledge, has

6http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
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been proposed by Lee and Un [104] in 2011. And in 2012, these authors have implemented a

cloud-based service for index search [21].

The first utilisation is the computing power provided by distributed computing, which can

better handle the increasing magnitude of data. Lee et al. [21] show the efficiency of the

cloud system working on the indexed search. Wen et al. [103] outline an implementation of

a cloud-based system to combat the magnitude of data encountered by digital forensics by

leveraging parallel computing. This work highlights the applicability of cloud computing in

digital forensics and the improvement that DFaaS could make. One use case of DFaaS is

to offer indexed search as a service [21]. Concerning the large volume of data needing to be

analysed, distributed computing systems could do the same work in parallel. Such a cloud

server can offer highly intensive computing process and a large quantity of storage to deal

with the slow processing on big data volume. In their paper, Lee et al. [21] outline a case

study that indexed search as a service.

In 2013, Wen et al. [103] designed a cloud-based framework, which deals with a large volume

of forensic data, sharing interoperable forensic software, and providing tools for forensic

investigators to create and customise forensics data processing workflows. After a series of

tests, the experimental results show that the proposed workflow management solution can

save up to 87% of analysis time in the tested scenarios. In this framework, the main purpose

of making use of cloud systems to deal with the large volume of evidence data through

distributed parallelisation.

DFaaS offers services to the user, which not only makes the evidence process easier but also

improves the overall case efficiency. A centralised digital forensic service offers significant

benefits: 1) facilitates remote evidence acquisition, 2) reduces IT skill requirements for inves-

tigators, 3) improves collaboration efficiency between detectives and investigators, 4) enables

easier cross-device or cross-case examination.

Conducting big dataset evidence collection and processing requires extremely costly local

infrastructures, a cloud-based distributed evidence collection and analysing system can be

cost-effective and easily scalable [105]. A Hadoop Distributed File System (HDFS) and

cloud-based conceptual model to support reliable forensics investigation on big data [105]. In

this framework, a deduplication layer is used to remove redundant data from the incoming

data stream.

2.6.2 HANSKEN: DFaaS System Used by NFI

A DFaaS system provides a new method to improve the investigation process, and at the

same time, it can be combined with the traditional process model. One implementation with

complete service and user interface is Xiraf (its successor is named HANSKEN), has been

built and used by Netherlands Forensics Institute (NFI) [102, 106]. The Xiraf system is

implemented based on a model proposed by Kohn et al. in 2013 [86]. It follows the process
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of the forensic investigation but improves the efficiency to process more data volume.

In 2014, van Baar et al. [102] outlined HANSKEN. It focused on a comparison between the

DFaaS framework with the traditional models and list the problems in traditional method-

ology while outlining how their DFaaS implementation has addressed some of these issues.

This work proves the viability and impact cloud-based digital forensic solutions can have on

the entire process.

Figure 2.7: Digital Forensic as a Servicea

aDu, X., and Scanlon, M. (2017). Expediting the Digital Forensic Process through a Deduplicated

Framework, 16th European Conference on Cyber Warfare and Security (ECCWS), Dublin, Ireland.

2.6.3 Benefits and Advantages of DFaaS

In the big forensic data age, DFaaS systems are proposed to improve the efficiency of the

investigative process at the framework level. The growing volume of data results in an

increased time needed for each step of a typical digital forensic investigation. Leveraging

cloud computing with its significant computing resources would be one obvious solution to

this issue. A centralised data storage server could expedite the process of evidence collection

and analysis [38]. In addition, a cloud-based digital forensics environment could enable case

detectives to directly connect and perform preliminary analysis themselves in a controlled

environment without waiting for expert analysis. In this triage model, DFaaS facilitates

the investigators preserve and analyse digital evidence on scene by connecting to the server

remotely. The management of forensics environment would still ultimately be handled by

digital forensic specialists. A broadly applicable framework that can deal with numerous

existing situations encountered in digital forensics, while being extensible to handle new

technologies has always been desirable. DFaaS enables this to be possible. DFaaS not only

benefits from the processing power cloud computing provides but can also influence the

future development of digital forensic science – opening up new possibilities for collaborative
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investigation. The evidence from cases could be stored into the cloud-based system, making

more intelligent forensic processing possible [97]. New tools and techniques developed in the

field of structured and unstructured data science could also be easily integrated to further

expedite the process.

2.7 Data Deduplication and Data Reduction

During an investigation, the acquired file artefacts usually are categorised by file types, im-

ages, documents, etc. Data reduction is usually as a step of a typical digital forensic process

model. For example, in the most recent proposed digital forensic framework Integrated Dig-

ital Forensic Process Model (IDFPM) proposed by Kohn et.al. [86].

The hash of each file artefact is calculated for the detection of known files. National Software

Reference Library NSRL7 is a reference library available for filtering out the boring files

(operating system files, application files, etc.) which consist of nothing valuable information

for the case through comparing the digital fingerprint (hash value).

2.7.1 Data Deduplication Technology

As the growth of data continues more and more techniques must be created to allow for

the storage of such high volumes of data. Many large cloud storage providers have already

incorporated such techniques, one of which is data deduplication. Data deduplication is an

intelligent compression technique used to optimise data storage where many duplicates can

occur. This is a quite useful technique when it comes to large server storage with a high

chance of duplicates due to its reduction of redundant data. There are two different types of

data deduplication considered, block-level deduplication and file-level deduplication. Before

storing a file, a database of files is referenced to see if this file or file block has been seen

before if so the metadata is stored along with the pointer to the unique file or file block copy

and the file itself is not stored again.

File-level deduplication or a single instance datastore is the costliest type of deduplication

space-wise. This compares entire files, uploading those that differ in any way. Alternatively,

block-level or sub-file deduplication only stores the repeated blocks within files once. The

reduction of redundant data by using block-level is greater than that of file-level as only

parts of each file may be uploaded rather than the entirety of each file. Each type has its

advantages and disadvantages within its context of use.

The ability to store larger volumes of data in smaller physical disk space allows people to store

7https://www.nist.gov/software-quality-group/national-software-reference-library-nsrl
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larger amounts of data much more conveniently. This trend is not expected to slow down any

time soon and according to discussion on future storage devices by Kryder and Kim [107], it

may continue to accelerate faster than expected. Data deduplication techniques have been

widely used by the world’s largest IT corporations in a number of different products and

systems mainly for the purpose of improving storage utilisation, thus reducing network data

transfer.

2.7.2 Data Deduplication in Digital Forensics

Data deduplication techniques can reduce the amount of data to be analysed. Data dedu-

plication is an intelligent compression technique used to optimise data storage where many

duplicates can occur. Applying data deduplication technique to digital forensic can eliminate

the repeat work during the investigation, such as processing of the operating system files,

application files, or event the illegal files analysed in the past case.

The phases of the generic digital forensics process model that includes identification, col-

lection, analysis and examination, and opinion/report [108]. Approaches to improve the

efficiency of the digital forensic process was constantly discussed. One reason leading to the

digital evidence processing very slow is the repeat and manual work waste lots of time of

the investigators [38]. A digital evidence processing system which eliminates the repeat and

reduces the manual work during the digital forensic investigation.

Data deduplication can be applied by comparing the digital fingerprint of each file to a known

file database, such as NSRL. Applying data deduplication to digital forensic acquisition has

been proposed since 2009 [109].

The difference between block-level and file level, in the context of a DFaaS model, is the

amount of client-server interaction. File-level deduplication checks a database for every file,

whereas block-level hashes each block and then check them against a database. Depending

on the file system, this could be every 512 bytes.

An improved data reduction method for digital forensic processing was proposed by Neuner

et al. [110] to promote the efficiency and effectiveness of an investigation. By employing

data deduplication techniques, a known file database preserving the analysis result can be

used for white/blacklisting saving the time of repeating analysis of file artefacts. However,

a forensically sound copy of disk drive is required to prove the digital evidence is valid and

acceptable to the court.

Forensic Soundness

Data deduplication and reduction have to consider forensic soundness, and this processing

can only happen after a sound disk image acquisition. Casey stated that digital evidence

must be preserved and examined in a forensically sound manner in order to be useful in an
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investigation [40]. In the context of disk imaging, digital forensic professionals qualify the

term by stating that to be forensically sound, the disk image must be a bit-for-bit copy of the

original (i.e., an exact copy) [25]. Physical level bit-for-bit copy of disk enables to collect data

out of the file system, i.e. deleted files, block slack, etc. Hash digestion of the disk is used

to check the integrity of the acquired data. It is also used to determine if digital evidence

has been modified or tampered with by comparing it with an original copy. The integrity

of digital evidence is important so as to ensure it is “legally acceptable”. Furthermore,

a forensically sound disk image also allows the reproducing of the analysis process. For

sound image acquisition, data deduplication should be conducted after a whole disk image is

collected.

Watkins et al. [109] explain the core concept through a project called Teleporter. The idea

behind Teleporter is to reduce the amount of data sent to remote storage by checking it

against data that has been found before. The reason this is done is because of the amount

of data that is common across most machines, e.g., operating system files. Rsync and LBFS

were two projects that influenced Teleporter. Rsync breaks files up into blocks and checks

the blocks against the files that already exist on the server-side based on their hash. LBFS

is similar in its use of hash but it enables low latency to files and applications over low

bandwidth connections. The tests showed that 50% - 70% fewer data had to be sent to

the server. An analytically sound concept was proposed by Watkins. Watkins et al. [109]

presents an approach acquiring an analytically sound copy during a deduplicated digital

evidence transmission.

Proven Effectiveness

Neuner et al. [110] expand the effect of the data deduplication in the digital forensic process.

Analysis results can be preserved, so that repeated analysis work is eliminated through the

creation of a white/blacklist. However, the forensically sound requirement was not dealt with

in this work.

Within the field of digital forensics, there is a significant amount of concern placed on having

to store the large amounts of data collected with each acquisition[12, 111, 39]. The increase in

data directly affects the time taken to both acquire and to analyse the data. If this problem

continues to be left unaddressed it may lead to serious problems in the future. This leads to

a requirement for techniques to reduce this amount of data within every acquisition. Based

on the testing result from Neuner et al., the storage requirement in realistic scenarios can be

decreased by 78%.

2.7.3 Data Reduction Approaches

Data reduction is a process of “finding useful features to represent the data depending on the

goal of the task [112]. Data reduction is necessary, as some type of file artefacts potentially
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contains more information related to the investigation, such as Internet history, user-created,

emails, documents, pictures, audio and video. For a specific case type, the usefulness is

different. For instance, in a child abuse investigation, all videos and images are typically

extracted during the examination and then are analysed to determine those relevant to the

case. In an intrusion investigation, all host interactions produced are analysed to determine

which are relevant to the incident.

The selection of those file artefacts most related to the investigation is data reduction. An

approach was proposed for digital forensic data reduction by selective imaging (DRbSI) by

Quick et al. [24] for big forensic data reduction. DRbSI enables to reduce [24]: 1)the number

of file artefacts: data subset reduction; 2) the size of file artefacts: enable to review thumbnail

video files at a far greater speed than when reviewing the original video files.

2.8 Automated Digital Forensic Analysis

Automation in digital forensics focused on improving investigative and provides efficiency

benefits of saving both cost and human effort. The automation of data acquisition and data

extraction is commonly used. This subsection presents the state of the art on automated

analysis approaches.

2.8.1 Challenges of Automation in Digital Forensics

In the past, digital forensic tools were mostly designed to extract data from the acquired

image, carving the deleted files, searching files through extension, name, and so on. These

tools assist the investigator in identifying useful information from raw data. In recent years,

automatic digital forensic investigation is often discussed as a technique for law enforcement

to achieve more with existing resources.

Up to now, the influence of automatic tools to forensic investigations is limited, as most

evidence processing still requires expert human input. Applying automation to digital forensic

investigation brings up challenges. The technological issue mainly comes from the diverse new

device types and software platforms being used [15]. From the perspective of the political

and social implications, automation could deteriorate the quality of the investigation and the

knowledge of forensics experts [71]. Current tools attempt to convert binary data to human

consumable information, then conclusions are drawn manually.

Digital forensic researchers are trying to build tools to analyse digital evidence automatically,

instead of manually repeating the same operations on each device. Automation can be an

appropriate way to combat the backlog, but still faces challenges from technical implemen-
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tation and being accepted by a court of law [71]. Casey [113] states that in terms of digital

investigation too little knowledge is a dangerous thing.

2.8.2 Metadata and Timeline Analysis

In the analysis phase of a digital investigation, standard questions asked by the investigator

include when, what, why, how? File system metadata records the most recent file actions,

i.e., creation, access, and modification dates. Digital investigation looks to acquire pertinent

information available on the system, from metadata and from timeline analysis to identify

items of significant forensic value [114].

File system metadata including file size, file path, file name, etc., are usually used for filtering

and indexing files in the examination stage of the investigation. File type filtering can allow

investigators to conduct data reduction. Directory metadata is used to find out the association

between files, e.g., temporal association, spatial association, etc. [115].

Raghavan [33] outlined that digital evidence encompasses: 1) User data, which directly cre-

ated or modified or accessed by the user; 2) Metadata associated with user data, which

provides the context of how, when, who and in what form the user data was created or mod-

ified or accessed; 3) Activity logs, which records of user activity by a system or application

or both; 4) System logs pertain to variations in system behaviour from the normal based on

one or more actions conducted by the users. Event reconstruction is an essential step for

investigators to understand the evidence.

OS and application log files record the user’s actions on a device. Data extracted from these

log files enable the generation of a timeline. Timeline visualisation can prove helpful for digital

forensic investigation [116]. However, due to the typically large number of digital events

extracted from a disk image, visualisation can often prove counterproductive in identifying

pertinent events. As a result of each user action potentially generating several digital events

on an abstracted level, the number of timeline events is often too large for manual analysis.

Millions of low-level events are difficult to contextualise by investigators attempting to figure

out the story on the device. Hargreaves et al. [117] outlined an approach for automatically

generating higher-level events, which greatly reduces their number and makes it significantly

easier to be understood.

Neuner et al. [110] discusses how techniques such as paralleled or automated approaches, file

whitelisting, etc., could be used to reduce back-end storage requirements. In their proposed

framework, data has been reduced through file hashing at first and then by using (i) similarity

hashing, (ii) whitelisting (using a reference data set (RDS) from NSRL) and (iii) cross-device

deduplication to get a reduced copy for analysis. The result of the evaluation states the total

reduction can be as much as 78% less than the full copy.
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2.8.3 Plaso/Log2timeline

The length of log files varies, as determined by the operating system and applications. As

previously discussed, digital evidence analysis is getting more complex due to the diversity

of devices. Forensic tools preserve evidence in different formats. An open-source framework

for parsing log file artefacts allows structured development of tools for further analysis.

A combined timeline contains digital events from several sources. log2timeline (plaso) [118] is

a framework facilitating the generation of a “super timeline” including digital events from the

file system, OS registry, logs, as well as application software logs. This contains information on

both the device access level and the file system level. log2timeline has been widely discussed

in the field and forms the basis for significant further research.

Timeline2GUI was developed to analyse *.csv log files created by log2timeline [119]. It is

an easy-to-use timeline analysis tool. Log entries which could be relevant are highlighted and

thus makes skimming the timeline easier. For example, “Green indicates that a file may have

been opened or created; Yellow shows that the event is related to web activity; Blue indicates

that an external device (e.g., USB stick) has been mounted/interacted with the system; Red

means some sort of execution was done on the system like an application was started”.

An abstraction based approach for timeline reconstruction was proposed in 2020, which is

based on the timeline data provided by log2timeline [120]. The generated timeline is broken

into four levels of abstraction in order to reduce the complexity of the timeline, omitting

unwanted details.

2.9 Machine Learning and Digital Forensics

2.9.1 Background of Machine Learning

Machine Learning has been widely applied to digital forensic investigation for data discov-

ery [121, 122], device triage [58, 31], network forensics [123], etc. Flach [124] outlined the

ingredients of Machine Learning are: tasks, the problems that can be solved with Machine

Learning; models, the output of Machine Learning; features, the workhorses of Machine

Learning. When to apply Machine Learning application, there are basically three steps: 1)

define the task; 2) feature construction; 3) evaluation and optimisation.

The first step in applying Machine Learning to a problem is to define the task, which is

an abstract representation of the problem. For a prediction problem, it can be defined to

be either a classification/clustering or regression problem, depending on the type of target

labels. Take age estimation as an example. If age is considered categorical, it can be defined
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as a classification task; while it could be a regression task if the age is numeric.

Features are “the workhorses of Machine Learning”, and feature construction is crucial for

the success of Machine Learning applications [124]. There are different kinds of features:

categorical, ordinal and quantitative. For text analysis, the raw data is a sequence of symbols

that cannot be fed directly to algorithms, bag-of-word representation is applied. For image

data, patch or contiguous patches can be extracted. During the experiment, features are

transformed, selected for reducing over-fitting, improving performance or reducing training

time. The No-Free-Lunch theorem implies that there is no ultimate feature learner, it is

various depending on the data distribution and learning algorithm [125].

Models are the output of Machine Learning [124]. Model evaluation enables its refinement,

and the process is iterated until the performance is sufficient. A confusion matrix is able to

show the accuracy of a classification task, where the classification performance of each class

can be found. The F1 score is an average accuracy of each class, which shows the average

performance of the model. Precision and recall are usually used in the evaluation matrix.

Data Preparation Feature Engineering

Model Training

Test Data

Evaluation Matrix Refined Model

Figure 2.8: Machine Learning Pipeline

Various tools have been developed for Machine Learning for model training and evaluation.

For example, Weka is for domain specialists rather than Machine Learning experts [126]. It

contains built-in tools for standard Machine Learning tasks and facilitates the building of

Machine Learning pipelines, training of classifiers, and running evaluations without writing

code. In recent years, the python scikit-learn/sklearn library is increasingly used both in

industry and academic settings. Digital forensic research applying sklearn in their experi-

ments include feature extraction for network intrusion detection [127], and metadata-based

classification of incriminating digital forensic artefacts [6].

2.9.2 Machine Learning in Digital Forensics

Machine learning is a set of algorithms learned from parsed data and then make intelligent

decisions. Machine learning based techniques have been widely applied to diverse fields.

Deep learning as a subset of machine learning really shines when dealing with complex prob-

lems such as image classification, natural language processing, and speech recognition. Even

though deep learning is gaining much popularity due to it is supremacy in terms of accu-

racy when trained with a huge amount of data in recent years, traditional machine learning
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algorithms are preferable with small data size.

Intrusion detection systems employ signature-based methods or data mining-based methods

which is typically expensive to produce. Unsupervised Anomaly Detection was designed to

process unlabelled data by Eskin et al. [128] in 2002.

In 2007, Khan et al. [129] proposed an approach employing Bayesian Networks trained by

file system footprint event to detect the possible execution of certain applications in the

event of computer misuse. This approach offers automatic classification, while the challenge

is obtaining the accurate footprint of the application execution. In forensic and security,

several intelligent malware detection systems can be found. Intelligent Malware Detection

System (IMDS) [130] is one example. It applies data mining techniques generating association

rules used for malware detection. To handle large volumes of data efficiently, Khan et al. [131]

proposed an artificial neural networks based approach generating a post-event timeline of a

seized hard disk. Monitoring the file system manipulations, capturing file system snapshots,

and then using the captured data to train a neural network to recognise execution patterns

of the application programs.

In 2009, an approach for computer user classification was presented in order to quickly classify

the seized computer [43]. The proposed method classifies the user through the user’s habits,

computer skills, interests, etc., which are determined by installed applications, operating

system settings, etc. The user profiling could be one of the following 5 categories: occasional

user, chat-internet user, office worker user, experienced user, and hacker user. This approach

prioritised the seized hard drive. Forensic examiners can focus on only related hard drive

images and reduce analysing time.

Machine learning algorithms are easier to be applied, in recent years, with high-level open-

source libraries such as sklearn. There are many forensic processes potentially solvable by

using machine learning methods.

A machine learning solution for device triage was proposed by Marturana et al. ([58] in

2011, and [31] in 2013). The lack of a sufficiently large, shared dataset is a challenge for

developing AI triage models. As the triage task consists of a quick, simple examination and

analysis to help investigators to reduce the noise and identify relevant information quickly,

the development of an emulated, realistic dataset is a substantial task.

Beebe et al. [32] proposed an approach for ranking text search hit to assists faster indexing

the aimed objects. The M57 Patents dataset was used in this work, which is a synthetic

case constructed by researchers. A range of queries was conducted and the search returned

2,640,681 search hits located in 46,884 allocated files and unallocated clusters. Of these, only

4.24% (112,020 hits) were relevant to investigative objectives. The experimentation indicates

by using the ranking model, achieves 81.02% accuracy on the 40% randomly selected test

sample by the allocated model, and 85.97% accuracy by the unallocated model.
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2.9.3 Background of Deep Learning

The key differentiator of Deep Learning from Machine Learning is that the features are not

designed by human engineers. Instead, they are learned from data using a general-purpose

learning procedure [132]. Machine Learning tasks require input that is computationally

convenient to process. However, it is often difficult to engineer features of real-world data such

as images, video, and sensor data. Representation (feature) learning techniques employed by

artificial neural networks allows a system to automatically discover the representations needed

for feature detection or classification from raw data [132]. In addition, deep learning typically

achieves better performance as you feed in more data, as shown in Figure 2.9.

Figure 2.9: Why Deep Learning? (Slide by Andrew Ng)

A deep learning model can be described in two stages, i.e., optimisation and inference. The

optimisation process, known as training, is used to update the weights connecting the layers of

neurons defined in the model. The process of weight update is achieved by a back-propagation

algorithm[132]. Before training a deep learning model, a loss objective is defined to measure

the difference/error between the predicted outputs and the targets. The model updates its

weights with the objective of minimising the loss function through many iterations. To make

it closer to the objective, the mathematics under the hood is gradient descent algorithms

for minimising the loss [133]. After completing the optimisation, then the model is applied

for inference, namely, making predictions on data that are unseen during training. One

key metric exhibiting a deep learning model’s performance in inference is the generalisation

ability. That says if the model generalises well, it performs on the unseen (test) data as well

as the training data.

CNN is one of the variants of neural networks used heavily in the field of computer vision

(CV). Recurrent Neural Networks (RNNs) are a very important variant of neural networks

heavily used in Natural Language Processing. Long short-term memory (LSTMs) is a special

kind of RNN, capable of learning long-term dependencies that make RNNs performant at

“remembering” things that have happened in the past and finding patterns across time to

make its subsequent guesses make sense.
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More specific applications of deep learning include content filtering [134], e-commerce rec-

ommendations [135], and search result relevancy scoring [136]. Other applications include

camera sensor model identification, image forgery detection, facial detection and recognition,

text clustering, etc. There have also been models developed for digital forensic investigation

including classification of malware, network intrusion detection, file fragment type, water-

marking, steganalysis, pattern recognition, timeline analysis, etc.

2.9.4 Deep Learning Applications in Digital Forensics

One problem faced during file carving is to determine the ownership of carved information

when the storage media is used by more than one user. An automated solution to the multi-

user carved data ascription was proposed by Garfinkel et al.[137]. The result shows the

accuracy of carved data owner classification is from 65.66% to 99.83%. The data used to

verify this system is disk images from the Real Data Corpus [75], a collection of more than

2,000 disk images made from hard drives that were purchased on the secondary market. The

features used by the proposed automated ascription system are 1) file system metadata (MAC

timestamp), 2) file placement (i.e., sector, fragment) information, 3) embedded file metadata

(JPEG camera model, Word file save time, etc.).

As the search space for fragments belonging to a particular file is so large, distinguishing the

file type of a fragment can shorten the search time. One approach proposed for file fragment

classification used NLP (Natural Language Processing) [138]. In this research, a supervised

learning approach is taken based on the use of SVM combined with the bag-of-words model.

File fragments are represented as “bags of bytes” with feature vectors consisting of unigram

and bigram counts as well as other statistical measurements (including entropy).

During the investigation of cases such as copyright infringement or ownership attribution,

pictures camera model identification is a problem need to be solved [139]. Tuama et al. [140]

outlined a novel approach for camera model identification, which is based on CNNs.

Marra [141] applied convolutional neural networks (CNNs) to camera sensor model identifi-

cation. As described in[141], during the learning process of an ANN, the back-propagation

updates the weight, Stochastic Gradient Descent is applied for the weights updating strategy

in the model by the authors.

Chen et al. [121] proposed a novel scheme based on fragment-to-grayscale image conversion

and deep learning to extract hidden features and therefore improve the accuracy of clas-

sification. This CNN model was trained and tested on the public GovDocs dataset. The

average classification accuracy achieved was 70.9%. Vulinovic et al. [122] stated even though

the results of [121] were promising, their approach adds nonexistent correlation to some byte

pairs, as bytes 1 and 17 for example now become closely related. Vulinovicet al. [122] applied

a CNN model using 1D convolution on the original byte block. Both feedforward neural

networks (FFNN) and CNNs are tested. Feedforward neural networks achieved better results
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using selected bigrams as input the highest macro-average F1 score is 0.8138.

2.9.5 Current Challenges and Future Directions

There are challenges in applying machine learning approach to digital forensics:

• Improving the accuracy: training models and measuring the accuracy is a challenge

because of the lack of large, clean, labelled datasets in some areas or existing datasets

not being publicly available. The lack of a sufficiently large, shared dataset is a chal-

lenge for developing AI triage models. As the triage task consists of a quick, simple

examination and analysis to help investigators to reduce the noise and identify relevant

information quickly, the development of an emulated, realistic dataset is a substantial

task.

• Explainable AI: to avoid bias, AI process reporting that a system containing criminal

activity needs to be able to produce a very clear explanation of why that is the case;

• Security and privacy: sharing models appropriately to avoid attacks such as ‘model in-

version’ and ‘membership inference’; Adversarial attacks are one of the challenges of AI

model development. It has been suggested that the existence of adversarial attacks may

be an inherent weakness of deep learning models [142]. The adversary can manipulate

the input resulting in the model producing the incorrect output. Adversarial attacks

could also be used as a counter forensics technique. As a result, any pre-trained model

could lose its effectiveness during an investigation. To this end, anti-counter-forensics

for adversarial attacks remains an open question.

• Validation challenge: for example learning from on-going case processing to expedite

evidence discovery in future cases, the result the technique may produce may change

on a daily basis;

Despite these challenges, there are many opportunities to enhance AI applications and to

apply AI to additional areas of digital forensics. These include inference of behaviour from

data obtained from novel sources including smart homes, IoT sensors, vehicle forensics, and

combinations thereof. Indeed AI techniques could potentially assist any time there is a need

to correlate data from multiple sources, either from multiple suspects, devices or cases. Non-

AI based efforts such as a standard form of representations, e.g., CASE [143] will be critical

for such efforts.

There will also be significant opportunities in the future for the investigation of AI-based

systems themselves. Determining the cause of a decision made by a self-driving car, a smart

building, or a SCADA system, will be a new area for digital forensics, although the concept is

discussed by Schneider et al. [144]. The investigation of these systems will require significant

effort on behalf of the investigator in terms of understanding the models, their training data,
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and the state of the model’s inputs when the decision was made. This will also require a

reasonable level of explainable AI. Of course, the investigation of digital forensic AI systems

themselves will be far from exempt from this scrutiny.

2.10 Correlation Analysis

With the big forensic data challenge, the heterogeneity of the data is one important factor.

Correlation analysis aims to address the issue of integrating analysis results from multiple

sources and formats of evidence data. Analysis tools are usually specialised [145], traditional

techniques use one or more forensic tools to process the evidence from each source. For

example, RegRipper, plaso (log2timeline) for log extraction, Wireshark for network packet

attributes, etc. As a result, cross-correlation analysis on heterogeneous data is a challenge of

big data forensics [146, 147]. The diverse device types and data formats further increase the

complexity.

The terms Forensic Feature Extraction (FFE) and Cross Drive Analysis (CDA) are proposed

by Garfinkel in 2006 [148]. Information extracted from multiple devices, such as credit card

numbers, email messages, etc., can be used for discovering the connection between them.

Case et al. [149] state most tools are created for a single specific task resulting in wasted

time. Case et al. create the framework Forensics Automated Correlation Engine (FACE) for

digital evidence discovery and event correlation.

As the number of files increases, file correlation becomes increasingly important. Metadata

plays an important role in digital forensics [150]. Information such as file owner, file size, file

date and file type can be used for correlation. The origin of downloaded files can be found

using metadata associations [151]. In 2013, Raghavan et al. [152] developed an analysis system

AssocGEN to determine the association between user files artefacts, logs and disposal not

network packets. It can also classify and determine correlations between artefacts.

To speed up the detection and interpretation of incidents from cloud sources process, Raju et

al. [153] proposed an approach for cloud-originated event correlation. A normalisation step

is required as cloud service logs come in different formats. There are two stages for correla-

tion: 1) consider the events from the perspective of single artefact and perform correlation

(homogeneous correlation) and 2) collect the events from multiple artefacts and then perform

correlation (heterogeneous correlation).

In 2017, a framework was proposed to get a more valuable reconstruction of events or actions

in order to reach case conclusions [154]. The proposed approach applying semantic web

technologies to digital investigation processes and tools can improve the automation of parts

of the analysis with respect to evidence discovery and correlation.
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2.10.1 Cyber-investigation Analysis Standard Expres-

sion (CASE)

CASE as a standard digital forensic format was proposed by a number of the EU’s leading

digital forensic experts at a meeting hosted at the headquarters of Europol’s European Cy-

bercrime Centre (EC3) in The Hague in 2017. It is one solution for the correlation analysis

problem introduced in the previous subsection, which allows the exchange of information

between digital forensic tools. It provides a common language to support automated normal-

isation, combination and validation of varied information sources to facilitate analysis and

exploration of the standard investigative questions (who? when? how long? where?)8.

A list of industry, including Magnet forensic, Oxygen, I2 – IBM, and Cellebrite are currently

looking into implementing the standard. Potentially, the use of CASE will provide structure

to enhance intelligent analysis (e.g., pattern recognition, machine learning, visualisation) as

well as enhancing tool testing and validation.

If it hoped that in the future, leveraging CASE will expedite digital evidence processing

speeds. With the CASE standard, automation in digital forensic can also be improved.

Besides, digital forensic analysis can be improved as the extracted data for is completed and

standardised.

2.11 File Artefact Prioritisation

The ever-increasing number of files encountered on each target device results in a prolonged

analysis phase of an investigation. In 2019, a large practitioner survey has been conducted

by Sanchez et al. and proved a substantial amount of manual analysis of child abuse material

and the lack of an automated tool to assist [70]. Search hit prioritisation can also provide a

more efficient analysis process.

Some current tools apply file clustering/classification algorithms to automatically categorise

file artefacts. However, the pre-trained model could result in missing relevant artefacts.

Prioritisation approaches rank the file artefacts by predicted importance/relevancy.

Gupta [155] proposed a framework to extract evidence and rank artefacts on the basis of

their relevancy. A document fraud case test was conducted, applying file extension, file size,

file name, file creation time, file access time, file modification time and file depth as learning

features. Experimental results demonstrated the viability of the proposed approach.

The larger the number of file artefacts encountered during an investigation, the more pro-

8https://caseontology.org/index.html
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longed the examination process becomes. Image file examination is important for several

cases types. In addition, keyword searching on file artefacts often results in a large number

of results being returned. Search hit relevancy ranking algorithms were proposed by Beebe

et al. [32] for reducing the analytical burden of text string searching.

2.12 Summary

This chapter presented the current state of the art of digital forensics. The big forensic

data challenge results in digital evidence backlog problem. Research work has been done on

various levels of abstraction to improve the efficiency of digital evidence processing. Applying

machine learning and cloud-based techniques have been proven to improve the efficiency and

efficacy of digital evidence processing.

Machine learning is a technique facilitating computers to learn to perform complex tasks

on data. One type of machine learning algorithm is supervised learning. Whereby sample

labelling is required to train the model. The output of digital evidence deduplication can

label the file artefacts as benign or illegal. This has the potential to be used as the input for

machine learning models.

Digital forensic process modelling is a topic frequently discussed. The constant evolution of

process models has occurred over the last two decades. During this evolution, these process

models integrated new components to solve new problems or improve efficiency. Any new

tool for digital forensics should also consider how it can fit the general process. In the other

words, it should be integratable into the traditional investigation process.

2.12.1 Gaps in the State of the Art

Data deduplication employs hashing techniques to filter out known files. This results in,

avoiding the redundant reanalysis of files. Research work has proposed reducing the repeated

acquisition process. Experimentation has proven the improvement of acquisition and analysis

speeds and storage savings. However, forensic soundness in deduplicated digital evidence

acquisition system remains a challenge.

In digital forensics, current machine learning classification techniques are pre-trained solely

on illegal files. These models can merely help identify known illegal files or files similar to

those illegal files. There is an open question on how bespoke, per-case classification can be

used for evidence analysis prioritisation. For example, in both civil and criminal cases, many

file artefacts might be not illegal but can nonetheless be relevant to an investigation. There

are currently no tools to aid investigators in the identification of likely pertinent previously
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unencountered data - both ‘illegal’ or ‘not illegal; but pertinent’.
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Chapter 3: Methodology

3.1 Introduction

This research introduces a centralised digital forensic system; it allows deduplicated digital

evidence acquisition, forensically sound disk image reconstruction, and facilitating machine

learning models for file artefact relevancy prioritisation. Due to the requirement of sufficient

test disk images for development and evaluation of the approach, tools for test disk image

generation are also introduced.

Centralised evidence processing system was considered because gathering the evidence cen-

trally allows preliminary analysis by the case detective without the need for manual, expert

analysis. This allows case progressing leads to be identified at the earliest stage possible. In

addition, having centrally stored evidence, and evidence processing facilitates the training of

ML models and the ability to learn from previous cases.

3.1.1 A Centralised Digital Evidence Processing Sys-

tem

A centralised system for digital evidence processing can benefit from increased hardware

resources and collaboration that a single forensic laboratory or police station may have. As

discussed in Chapter 2, HANSKEN, evidence as used by the NFI1, is a centralised system for

digital evidence processing and preserves pertinent analysis decisions. Invigilators can apply

the developed tools on server-side, and exchange information directly with detectives.

The system implemented as part of this research integrates data deduplication and machine

learning techniques. Digital evidence from multiple devices/cases can be simultaneously pro-

cessed by the system. The acquisition process extracts data from the seized device and

transmits it to the server. The collected data from each device are stored uniquely in the

central evidence store and the metadata is stored in the database. In fact, should duplicate

artefacts be encountered during simultaneous acquisitions, they would only need to be up-

loaded once (assuming they aren’t being processed at exactly the same instant). The timeline

generation can also be conducted in parallel. The overall design of the system is shown in

Figure 3.1.

1https://www.forensicinstitute.nl/
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• Deduplicated Digital Evidence Acquisition: A centralised database is leveraged

for preserving the analysis results of file artefacts encountered. To eliminate repeated

acquisition of previously encountered files, metadata and hash values of files are sent

to the DFaaS system first. As a result, only newly encountered files are collected by

the DFaaS system.

• Forensically Disk Image Reconstruction: Forensic soundness is paramount con-

sidering the acceptance criteria for digital evidence in court. Even though the effective-

ness of deduplicated acquisition has been proven, as discussed in Chapter 2, the forensic

soundness of this approach is still an unsolved problem. Therefore, the acquisition pro-

cedure of the proposed system includes an additional component for forensically sound

disk image reconstruction.

• Leveraging Known File Artefacts: At the acquisition stage, the hash value of a

file is used for data deduplication. This process facilitates the recognition of known

illegal/benign files. These known files then can be used for training model training for

classification. The trained models can determine which of the previously encountered

files are likely to be more relevant to the investigation.

Centralised Repository
(Metadata, Hash,

Preserved Result, etc.)

Disk Image

Step 1: Check File Existence

Step 2: Data Collection
Data Storage

Disk Image

Step3: Disk Reconstruction

Log to Timeline

Known User Files

Machine Learning

Deep Learning

Analysis Result

Figure 3.1: Overall System Design

3.1.2 An Automated File Artefact Analysis Approach

Automation tools can assist in processing digital evidence more efficiently, especially when

the data volume and the number of files are significantly large. Deduplicated acquisition can

recognise known illegal/benign files, and these known files can be used for training machine

learning models.

• Known File Artefact Detection: One way for file analysis is to compare the hash

value of file with the known file database. Hash functions such as SHA1/SHA256 are
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commonly used in digital forensics for identifying files. The system checks file existence

on the DFaaS system by hash. This approach facilitates the detection of illegal files at

the earliest stage of the investigation.

• Relevancy Determination of Unknown File Artefacts: As known pertinent files

are used for training machine learning models. new files similar to the detected illegal

files can be flagged/prioritised as more likely to be interesting to the investigation.

each file’s metadata and associated timeline events, as well as the file data itself, can

be used as input for model training. As a result, new files can be classified into those

relevant or not relevant to the investigation.

3.1.3 Design of Experimentation and Evaluation

Figure 3.2 presents the workflow of data generation, acquisition for the analysis used in

this research. Experimentation is conducted on disk images generated in virtual machines.

The generated disk images are used for testing the effectiveness of both the deduplicated

acquisition system and the proposed file relevancy determination approach.

• Test Image Generation: TraceGen2 is a tool for automated wear-and-tear generation

on a disk image for analysis. Generated disk images contain common user actions on a

computer and files are created, accessed, shared, etc. There are also illegal actions/files

emulated on the machine.

• Deduplicated System is tested by the repeated acquisition of the generated disk

images. Disk images generated are with different duplication ratios, for testing the

effectiveness improvement gained through this approach.

• Relevancy Determination are tested on disk images with emulated criminal stories.

The performance can be evaluated for the resulting detection of illegal files.

The result and evaluation conducted as part of this research include:

1. File system analysis on the generated disk images created by the developed approaches;

2. Forensic soundness verification of the reconstruction disk image to assure the acquisi-

tion integrity;

3. Repeated acquisition of disk images to evaluate acquisition speed

2Du, X., Hargreaves, C., Sheppard, J., and Scanlon, M., TraceGen: User Activity Emulation for

Digital Forensic Test Image Generation, Forensic Science International: Digital Investigation, ISSN

2666-2825, September 2020.
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Figure 3.2: Methodology Overview

4. Evaluation of the performance of file relevancy ranking by the personal recall of illegal

files covered at the top n percentages;

5. The performance of file prioritisation based on the selection of features used;

6. The performance of file prioritisation on realistic disk images (with different amounts

of known files, various case scenarios, etc.).

3.2 Tools for Test Disk Images Generation

In this subsection, the developed toolkit to generate data for the experimentation and evalu-

ation are introduced; TraceGen and EviPlant. These tools can benefit disk image generation,

manipulation and distribution.

EviPlant can be used to distribute “stories” and merge into base images reducing the need

for large storage of hard drive images for training, tool testing and validation and enables

more realistic scenarios for analysis and processing in a remote education scenario. This is

achieved using the diffing engine to create mergeable evidence packages. Tracegen can be

used for executing both “stories” and generating realistic wear-and-tear.

3.2.1 TraceGen: Overview

The overall aim of the tool is to provide an automated approach to generating disk images for

digital forensic research and tool testing and validation, proficiency testing and education.

An overview of the system design is shown in Figure 3.3. The input is a list of user actions.
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Figure 3.3: TraceGen: Overview of the Approacha

aDu, X., Hargreaves, C., Sheppard, J., and Scanlon, M., TraceGen: User Activity Emulation for

Digital Forensic Test Image Generation, Forensic Science International: Digital Investigation, ISSN

2666-2825, September 2020.

The script executes on the host and controls the guest machine; from the boot, performing

internal and external actions, to shut down. In the end, a forensic image with user traces

in the guest OS is generated alongside the log recording the actions executed, providing a

ready-made ground truth.

At present, internal scripts are executed inside the VM to automate internal user actions.

There will be inevitable traces left on the disk of the VM that would not be present with

human-only generated data. However, building disk images inside virtualisation platforms,

which is common practise, is at some level already inconsistent from a real system (for ex-

ample virtual hard disk identifiers, virtual USB controllers, etc.) Certainly, in educational

assignments/proficiency testing, this can be covered using the phrase “During your analy-

sis, please ignore any virtualisation artefacts that are part of the data generation process”.

Students/test-takers could also be instructed to ignore results of the artefact automation pro-

cess, if these artefacts can be identified, minimised, and segregated. An entirely GUI based,

external approach would eliminate this issue.

3.2.2 TraceGen: Existing Automation Options

The types of actions that can be performed on a target VM are therefore split into three

categories:

• Machine Control Actions - these are performed outside of the VM, e.g., powering

on the VM, performing unsafe shutdown the VM (i.e., “pull the plug”), adjusting the

BIOS time, etc.

• External User Actions - these are performed from outside the VM, e.g., copying
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or moving files, performing a Google search, shutting down the VM in a controlled

manner.

• Internal User Actions - these are performed inside of the VM, e.g., copy or move

files, perform a Google search, shut down the VM in a controlled manner.

When implementing emulated user actions, there are a number of options available. At a

high-level, these include:

• Application Programming Interfaces (APIs) – For example, pywinauto3 facili-

tates the automation of the Windows GUI using the Win32 API. It allows Pythonic

interaction with GUI components, e.g., to save a file in Notepad:

app.UntitledNotepad.menu_select ("File ->SaveAs")

• Simple Mouse and Keyboard Control – This allows injection of keyboard input,

mouse movement and clicks at specific coordinates.

• Graphical User Interface (GUI) Interaction – this technique is more advanced

than ‘blind clicks’ above, and can also visually process any given application and pro-

grammatically execute specific mouse and keyboard actions. Examples of GUI based

automation tools include Sikuli [156] and PyAutoGUI. Sikuli enables screenshots of

GUI control elements to be taken (such as a toolbar button or icon), which can be

included in a sequence of actions in order to script complex interactions with any ap-

plication. In a similar vein, PyAutoGUI4 is a cross-platform GUI automation tool

designed for programmatically controlling the mouse and keyboard. One benefit to

this approach over Macros is that the script is resilient against any specific control

element not appearing in precisely the expected coordinates on the screen.

• Browser Automation – There are also application-specific automation tools that

could be used, for example Selenium5 that automate most major web browsers.

One limitation is this tool leaves extra traces by running internal scripts. However, this

approach is to attempt to programmatically automate the actions of a user and allowing the

system to generate realistic artefacts, rather than trying to artificially create them.

3https://pywinauto.readthedocs.io/en/latest/
4https://github.com/asweigart/pyautogui
5https://www.seleniumhq.org
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3.2.3 EviPlant: Image Generation Using “Evidence Pack-

ages”

EviPlant6 is a tool created for easier creation, manipulation and distribution of disk images

for digital forensic testing [3]. There are two components of EviPlant: the diffing tool and

injection tool. The fundamental building blocks for EviPlant are evidence packages.

Evidence packages contain all the digital artefacts and associated metadata created during

the emulation of the crime or wear-and-tear actions. The artefacts contained within evidence

packages fall into two categories, X and Y which combine to capture all the necessary data

modified from the base image after performing a specific task or set of tasks.

Test Disk Image

Basic Disk Image

Evidence Package

Basic Disk Image Test Disk ImageInjection

Diffing Evidence Package 3

Evidence Package 4
Evidence Package 1

Evidence Package 2

....

Figure 3.4: EviPlant: Evidence Package Extraction and Injection

• The Diffing Tool compares two images and extracts all artefacts that prove different.

The resulting evidence package contains the artefact(s), the associated *.csv meta-

data (i.e., file name, logical position, etc.) of each extracted artefacts in the evidence

package. In addition, this tool enables high-frequency package creation, real-time mon-

itoring, and reconstruction of the device state at any point necessary.

• An Evidence Package consists of the metadata and artefacts extracted from disk

images by the diffing tool. It is easier to distribute evidence packages as they are

smaller than entire disk images. The preservation of different disk images subsequently

requires the storing of one basic disk image and many associated evidence packages.

• The Injection Tool put the artefacts into the target image based on the metadata

stored in the database. Test disk images then can be created as needed.

6Scanlon, M., Du, X., and Lillis, D. (2017). EviPlant: An Efficient Digital Forensic Chal-

lenge Creation, Manipulation and Distribution Solution. Digital Investigation, 20, S29-S36, Elsevier.

https://doi.org/10.1016/j.diin.2017.01.010
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When many different images have to be created, it can be completed by editing the evidence

packages, instead of manual operations on each image. The benefits of EviPlant include:

• Saving Storage Space: If many different disk images have to be stored, it likely re-

quires very large storage space. Preserving only the diffed files and metadata between

acquisitions saves a significant amount of space.

• Distribution: Sharing disk images over a network is slow. The smaller size of the

evidence packages makes it easier to be distributed and share.

3.3 Deduplicated Data Acquisition of the Sys-

tem

Disk devices are the most common devices in digital forensic investigation and typically

contain a wealth of information. Disk data acquisition requires a verifiable copy of the

storage device. Disk imaging is a process of making a bit-by-bit copy of the entire contents

of a hard drive. Hashing the output from this technique is used to assure forensic soundness.

Overall acquisitions conducted in a forensic laboratory, there are many repeated artefacts;

from operating system and applications to commonly shared files, e.g., music files. These

are acquired again and again; wasting valuable investigative time. Eliminating previously

encountered files is crucial for achieving a more efficient investigation process overall.

Block-level hashing wasn’t used as block-level hashing increases the time for the hashing data

on the disk. In addition, further analysis (timeline event-based file relevancy determination)

is file-based. A file’s hash value is used for recognising previously classified benign/illegal

file, as shown in Figure 3.5 [1]. The deduplicated acquisition system proposed as part of this

research is designed to move this process to the earliest stage possible. It eliminates repeated

acquisition of common data and more importantly, it enables the detection of known illegal

files during the acquisition stage.

The system proposed as part of this research acquires data residing on the disk device. Only

file data that is new to the DFaaS system is collected. The physical location of each file

fragment is recorded during the acquisition. For collecting complete disk images, the free

space, unallocated space, and file slack are also acquired.
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Figure 3.5: File Signature Search Process Overview [1]

3.3.1 Deduplicated Acquisition Process Pipeline

Figure 3.6 shows the process of evidence data transmitted from the client to the server. The

data acquired from the target devices include the files, slack space and unallocated space.

The steps include:

Client
Test Image

Hash and
Metadata

Server

Check File
Existance

Database

Send File
(if not

Existed)
File and

Metadata
Preservation

Send
Unallocated

Space

Figure 3.6: Deduplicated Acquisition

1. The client extracts metadata from disk image including the file hashes;

2. The client sends metadata to the server;

3. The server checks for the prior existence of the received files hash values;

4. The server sends Yes or No existence of the file to the client;

5. The client sends the file (file data and file cluster slack) if required;

6. The server checks the integrity of the file received;

7. The server sends a request to the Client again if the hash value does not match;
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8. The client sends non-file data (i.e., free space and unallocated space) on the device to

the server.

This approach calculates files’ hash value before acquisition enables illegal files to be detected

at an earlier stage of the investigation. Hashing files for checking data integrity and recognis-

ing known files are implemented in this approach, there is no need for other tools to do the

same work. When applying other tools for further processing, investigators could choose to

skip the file hashing step. In addition, future commercial tools developed under the standard

CASE, information exchange (import and export data) between forensic tools is possible.

Hash values generated by this approach could be imported to other commercial tools when

needed.

3.3.2 Client Responsibilities

The client extracts the file system metadata, file data and hashes the file data. For disk

image reconstruction purposes, data from file cluster slack, free space and unallocated space

are also collected.

• File Data and Metadata Extraction: The file system analysis library pytsk is used

to extract file system metadata and file data on a disk drive. The physical location of

each file fragment is also included in a file’s metadata.

• File Hashing: Before data transmission, the file data is hashed using SHA1. Its

metadata and hash are sent to the server first. The hash value is used to check for the

existence of a file on the server. If it does not exist, then a file request will be sent to

the client. More importantly, if it is an illegal file, it can be flagged during this process.

• File Slack Data Extraction: pytsk provides the start block and length of each file

fragment. The summation of the allocated block size minus the file size provides the

slack size. The Linux dd command copies a storage device bit-by-bit from an input or

source file to an output or destination file and is applied for copying this data.

• Extracting Other Data on the Disk: The blocks numbers of free space and unal-

located space can be acquired through discounting the blocks allocated to files already

acquired from the total blocks of the partition. The dd command is also applied for

copying this data.

3.3.3 Sever Responsibilities

The server side of the proposed system checks if each file requires upload, verifies the trans-

mission of evidence is verified and preserves the collected data. Digital evidence analysis is

also conducted on the server and will be discussed in later sections.
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• File Existence Check: A database preserves the hash value of previously encountered

files. Each time a file is encountered, its file signature is searched for in the database

to determine if the uploaded acquisition is required.

• File Integrity Check: In case of data loss or corruption, every uploaded artefact is

verified server-side. If the hash does not match, then the server will send a request to

re-upload that specific file again.

• File and Metadata Preservation: The files are saved using the same logical struc-

ture of files on the target disk. Each time a new file is acquired, the existence of its

parent directory is checked and created if it does not exist.

3.3.4 Summary

• The proposed system collects unique data encountered across all gathered evidence,

saving bandwidth and storage space and facilitates basic cross-case intelligence, i.e,

detecting previously classified pertinent data during acquisition.

• This acquisition process acquires more than just a copy of evidence artefacts, it has

also completed part of the preliminary analysis (generating the hash digests and storing

associated metadata into the database for future examination).

• This approach facilitates the detection of illegal files at the earlier stage of digital

forensic investigation. It can also potentially shorten the time for remote whole disk

image acquisition, i.e., in scenarios where the network speed is the bottleneck of the

acquisition, eliminating data to be transmitted is desirable.

3.4 Data Storage of the System

This subsection introduces the data storage aspect of the proposed system. It is specifically

designed to enable deduplicated digital evidence acquisition and forensically sound disk image

reconstruction. It has been presented how the client and server operate in unison for data

collection.

As discussed, even though a data deduplication technique is applied, the cumulative data

preserved on the DFaaS system contains a complete copy of the target disk. There are

different abstract levels of data residing on the disk; block level, file level, file slack, and

unallocated space. Besides the files recovered, data at the physical level is also preserved

for complete disk image reconstruction. The collected metadata and file artefacts are saved

server-side ready for reconstruction when needed.
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Server-side, a file is saved in the same logical path/directory as it was on the original target

disk. The categories of files are presented below in Section 3.4.1. Non-file data on the device

are saved in another directory; with the physical location (block number) being used as its

file name. A detailed description of this is presented in Section 3.4.2. A database is used to

preserve the metadata, as well as the logical and physical locations of a file. The metadata

preserved are presented in Section 3.4.3. Section 3.4.4 discusses the log of each acquisition -

stored into an auditable file.

3.4.1 Categorising Files Collected from the Disk

As shown in Figure 3.7, from a file analysis perspective, files are categorised into three classes

as benign files, log files and user files. User files are multimedia or documents; these could be

known as benign/illegal and unknown benign/illegal. Log files, e.g., browser history, should

typically be unknown files as the operations are logged different on different devices.

• Benign Files operating system files, installed applications files, as well as files that

were classified as such in a previous investigation. To reduce the time of processing,

these files are filtered out through data deduplication at the acquisition stage;

• User Files are files such as images, audio, video, archives, documents, and will require

content analysis to ascertain if they are illegal or benign. This analysis result should

be preserved, and subsequent occurrences of this file will be recognised as known files.

These user files are analysed at the next phase:

– Known benign/illegal file artefacts can be used for training machine learning

models for prediction of new case investigation;

– Unknown file artefacts can have their relevancy determined from these trained

models.

• Log Files are various, from operating systems and applications. These files often

contain the answers to the most common questions of an investigation (what, when,

where, why, how, who). Digital events from log files are also capable of supporting

the analysis of user files. The associated timestamps extracted represent digital events

on file artefacts, which are used as features to represent files as input data to train

machine learning models.

3.4.2 Unallocated Space and Slack Space on the Disk

When the client extracts non-file data from the seized disk, the data is also extracted and

sent to the server. The block numbers, which represents the physical location of the data,

are used in their server-side name.
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Figure 3.7: Categories of Files on a suspect Device

• Unallocated Space: A partition or logical drive must be formatted before it can be

available for data storage. It is possible that less than the entire partition or physical

drive is used, and some space is left unformatted. Under normal conditions, it cannot

be allocated to files. However, it could be used for data hiding;

• Unallocated Space: Another kind of unallocated disk space is the unused space on a

formatted partition; the blocks that are not allocated to a file. However, these blocks

could contain data from the previous file allocations. Deleted data can be recovered

from these blocks.

• File Level Slack: File systems allocate disk space to a file in fix-length clusters; there

could be space leftover in a block of the end of the file. The unused bytes in the last

data unit for a file are called slack space and can contain file fragments from previously

deleted content.

3.4.3 Metadata and Acquisition Records

Metadata storage has three uses: 1) it supports deduplicated evidence acquisition; 2) meta-

data examination is important in the process of digital forensic investigation; 3) it collates

all the metadata of each acquisition together, enabling the future intelligent examination.
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File metadata such as DedupedPath, file fragments are collected for disk image reconstruc-

tion. Other filesystem metadata, such as MACB (Modification, Access, Change and Birth)

timestamps for digital forensic analysis, is generated independently. Figure 3.8 shows an

example of the preserved metadata for each individual file.

Figure 3.8: File Metadata for Deduplication and Image Reconstruction

• sha1 is the hash value of the file;

• file partition offset helps to find out the physical location of a file for disk image recon-

struction;

• file fragments is the blocks allocated to the file. The number of fragments can also be

found;

• DedupedPath is the logical directory of a file on the server. When one file is used to

reconstruct for a disk image, its location can be found here;

• mongo id is generated by MongoDB;

• acquisition id represents which disk image the file is from;

• partition dir is the partition name;
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• file requested is the file name;

• inode is a “file ID” in NTFS, which is the record number representing the file in the

Master File Table.

The devices acquisition records are also saved in the database. Figure 3.9 presents an example

of a device acquisition record.

Figure 3.9: The Acquired Disk Image

• partition size represents the size of the collected partition;

• image id is generated by the disk name and timestamp of acquisition time;

• acquisition time is the time taken for disk acquisition;

• image size is the size of the disk image;

• dedup root path is the root path of the saved files;

• partition SHA1 refers to the sha1 hash of the partition data;

• image name refers to the name of the disk;

• partition name refers to the name of the partition.

3.4.4 Acquisition Logs for Performance Analysis

The server-side operations generate auditable log files for analysing the performance and

verifying the accuracy of the proposed system. The acquisition log (stored in a *.csv) records

the data verification, collection time, transmission speed, duplication ratio, etc. The full list

of entries and their description is outlined below:
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• Log Time Stamp: the start time, i.e., when the server first time receives the client’s

request;

• Image Processed: caseid devicename;

• Reading Time(s): the time taken for metadata extraction and file hash calculation;

• Files on Disk: the number of files on disk;

• File Size on Disk: a sum of all files’ sizes;

• Files Sent to Server: the number of newly encountered files;

• Total Bytes Sent to Server: the size of all collected files and data;

• Actual System Throughput (MB/s): transmitted data/time taken;

• “Effective” System Throughput (MB/s): reconstructable data/time taken, reconstructable

data is the complete data on the disk;

• Duplication Rate: (disk size - transmitted size)/disk size.

3.5 Forensically Sound Image Reconstruction

from Deduplicated Acquisition

Even though previous work as outlined in Section 2.7 have proven the efficiency of a dedu-

plicated acquisition system for digital forensics, the forensic soundness of duplicated digital

evidence is an unsolved problem. In comparison with the current state of the art and alter-

native approaches, the approach outlined as part of this work progresses one step further,

i.e., forensically-sound complete disk image reconstruction.

In the proposed system, data imaging is not achieved through an entire bit-for-bit copy, but

it does afford the same forensically-sound disk image to functionality the investigator. The

acquisition result can be verified by comparing the hash of the reconstructed disk image to

the original one. For the purpose of disk image reconstruction, there are three constituents

of binary data necessary. The file data, the block-level slack space, and the unallocated space

on the disk. This reconstructed image can subsequently be verified against the original drive

by comparing their hash values.

During acquisition, the previously acquired data is skipped and is not redundantly acquired

by the system. The data subsequently used for disk image reconstruction uses the previously

collected data. Retrieving a file is conducted using its hash, and then reading for the required

file from the dedup path, which is saved the directory of the file on the server.
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Figure 3.10: Forensically Sound Disk Image Reconstruction from Deduplicated Systema

aDu, X., Ledwith, P., & Scanlon, M. (2018). Deduplicated Disk Image Evidence Acquisition and

Forensically-Sound Reconstruction. The 17th IEEE International Conference On Trust, Security And

Privacy In Computing And Communications (IEEE TrustCom-18).

Figure 3.10 shows the process for image reconstruction. The forensic artefacts from each

acquisition and the metadata stored in the database are necessary for recreating a forensically-

sound image. To recreate an image, the system first needs a specific acquisition id and based

on this id, the information such as image size and data storage locations can be retrieved. A

blank staging image is first created and subsequently, each of the artefacts is placed at the

same specific physical block offset as in the original disk. Finally, a hash is generated and

compared with the original device’s to verify successful reconstruction. The reconstruction

log is generated; including the reconstruction time, result, the hash of the complete disk

image, etc.

Evidence reassembly is only required if a traditional digital forensic tool is needed to be used

for analysis and this tool requires access to a full disk image. The growing paradigm shift

towards cloud-based evidence processing can completely negate the need for full disk image

reconstruction. However, as a bridging technology, full disk image reconstruction is needed

to ensure court admissibility and compatibility with existing workflows.
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3.6 Data Extraction and Preparation

3.6.1 Data Extraction: Tools and Techniques

The system implemented is tested on disk images with Windows 7/8/10 and NTFS file

system. The Windows disk image for analysis is run on VirtualBox. File system-level data

extraction uses pytsk, timestamps extraction from logs uses plaso.

The digital forensic analysis approach employed in this research is for user files relevancy

determination. File data can be used to determine its relevancy, in combination with its as-

sociated metadata and timeline events. The different input for model training offers multiple

options for relevancy score generation. This will be determined by the investigative scenarios.

More detailed discussion on this topic is attached in Section 3.7.4.

Figure 3.11 shows how the data for training machine learning models are generated from a

disk image. The input is disk image in CSV format. The output is a file in csv format.

The tools for metadata and digital events extraction operate directly on the raw disk image.

There are three parts at this stage: 1) metadata extraction using pytsk; 2) digital events

extraction using plaso; 3) merging each file’s metadata and digital events. In addition,

feature engineering and feature selection are required before being used for training models.

Generated Dataset

Metadata of File Artefacts

Digital Events

Metadata Extractor

Log2timeline

Data Pre-processing

Raw Images of 
Seized Devices

Figure 3.11: The Developed Toolkit for Data Extraction and Processing

3.6.2 File Data Reduction/Selection

Data reduction allows forensic experts to focus on analysis files potentially more useful to the

investigation. For different types of cases, investigation focus is also different. Multimedia

are more interesting in a child abuse case investigation. Documents are more likely relevant

to a financial fraud investigation. These files can be selected for automated classification by

using file header information. This would first identify all files of a specific category, e.g.,
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image files, and then these would be used to perform automated classification based on their

associated metadata and user usage patterns.

As discussed, machine learning models are trained for user files relevancy classification. User-

generated files in an investigation commonly are multimedia files and documents. It could

also be computer code/scripts in a hacking investigation.

Therefore, a data reduction process is required before analysis for selecting only the objective

file types. Table 3.1 shows file type and file extensions that can assist the file selection for

investigation.

File Type Common File Extensions

Pictures jpg, bmp, png, gif, psd, jpeg, tif, tiff

Videos wmv, avi, mov, mpg, mp4, flv, 3gp, mts, vob

Audios mp3, wav, amr, ogg, m4a, wma

Documents doc, docx, dot, wri, rtf, odt, odg, ods, ots, pdf, xls, xlsx,

xlsm, ppt, pptx, myob

Table 3.1: Data Selection by File Type/File Extension

File extensions can be faked and edited. There are tools to detect extension forgery and

correctly identify the file type. Tools can be integrated into this system, but this is beyond

the scope of this work.

3.6.3 File Timeline Generation and Feature Extraction

Researchers in this field have developed and proven file clustering/classification models us-

ing metadata or file data to assist digital forensic analysis. This research adds file specific

timeline events into consideration for file classification to determine files that are likely to the

investigation.

A file timeline is composed of the digital events associated with a specific file. These digital

events are from the generated “Super Timeline” (a disk image timeline). Figure 3.12 presents

the file timeline generation process. The file name list contains the selected types of user files.

Each file name is used as the keyword to search from the disk image timeline for file timeline

generation. Subsequently, features can be extracted from the file’s timeline to be used for

the representation of the file.

Feature Extraction: Features from the file timeline express the digital events associated

with the file. There can be digital event sources, the number of each event source associated

with the file, etc. The sources of digital events include FILE, LOG, LNK, WEBHIST, REG,

etc. As several feature options are possible, feature selection is required before to inputting

the data to machine learning models.
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Figure 3.12: Data Processing: File Timeline Generation and Feature Extraction

An abundance of features can be easily obtained from file artefact timelines. However, the

number of features should fit the dataset to achieve optimal performance. Feature selection

helps to avoid missing useful features while also identifying the most significant features

available. Which features and how many should be included? Generally, larger datasets

can handle more features. So when the dataset is small, fewer features can be beneficial to

maintain a usable performance.

3.6.4 Feature Extraction from File system Metadata

Features can also be extracted from file system metadata. The most popular events (and

their corresponding source, type, etc.) can be used as features, but bespoke metadata, such

as filename and timestamp, are likely not suitable to use directly for training classification

models. Table 3.2 lists the useful metadata and the corresponding features that can be

extracted, manipulated, and transformed.

In training machine learning models, not every feature available proves valuable. For example,

randomly generated numerical features, artefact hash values, or inode values are not helpful

to a prediction task. Feature manipulation is usually needed for a specific task or purpose

for each machine learning model. Through feature transformation, the information input for

training the model can be added, changed or removed as desired for each task. In fact, the

resultant model is a way of constructing a new feature that solves the task at hand [124].
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Metadata Features Extracted

Timestamp Day of the week, time of day, the number of years/months/days/hours

of the file created/last access/modified, etc.

Filename Length of the filename, character types in the filename, language, etc.

File Type Type of file, for example, image, document, executable, etc. This is

based on file header information as opposed to file extensions.

Owner Username of the file creator.

File Size Categorising the size in KB.

File Path Depth of the directory; depth is defined as the number of parent direc-

tories in the hierarchical file system.

Digital

Events

The number of associated events occurred on the file artefacts in total;

the number of the events occurred on the file artefacts on/in a specific

day/week/month; the most frequent type/source of events happened;

and so on.

Table 3.2: Valuable Feature Extracted

Feature selection techniques should be applied to determine what features are best applied to

the model. Identifying the most influencing features can be used to improve the performance

of a machine learning model. However, a balance must be struck – having too few features

in a model could lead to over-fitting.

3.6.5 Train/Test Data and Evaluation

Testing disk images used contained emulated “illegal actions”, and “illegal files”. Some other

files in the disk are normal/benign files. In the experimentation, assuming a subset of these

files are assumed by the deduplicated system as “known illegal files”. The proposed machine

learning approach is then applied to test if other illegal files can be ranked at the top. The

result is evaluated by the recall of reviewing the top n percentages of the ranking result.

When applying this approach to an investigation, both the training and prediction process

is conducted during the investigation. The training data are known files classified as known

as illegal/benign. The features applied can be selected during the investigation. Instead, the

unknown files are ranked by the relevancy score predicted by the model.

3.7 Relevancy File Artefacts Prioritisation

Traditional triage or data reduction approaches build filters based on investigative experience.

For example, looking for a document or an image in a financial crime, e.g., scanned documents,
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can cause an issue with the volume of results returned if merely filtering by file type. Specific

keyword searching might only retrieve a very limited or empty result. Files can be selected

or removed by metadata (file size, file type, etc.). However, in some cases, e.g., a child abuse

material investigation process, the number of files can remain very large. File prioritisation

is required to provide a more efficient analysis when the number of files is huge.

To reduce the manual analysis effort required during the investigation, automated detection of

suspicious file artefacts (i.e., file artefacts that are pertinent to the investigation) is proposed.

Previous approaches applied hash value for automated filtering of illegal and benign files. The

proposed approach takes advantages of the detected illegal file artefacts and uses metadata

file to automatically identify files more likely to be pertinent to the investigation.

This approach predicts the relevancy of unknown files by the machine learning model trained

on the known files. It can be used in different investigate scenarios, with the difference being

the selection of features applied: 1) files are from the same device: file path, file source, file

access, etc. 2) files are from the same case but multiple devices: file source, file access, file

shown on different devices, etc.

• Relevant Files: Relevant files are files interesting to investigators. Files with similar

content, metadata or interactive user behaviour to the detected illegal files are likely

relevant files. These files are ranked by the relevancy score provided by the machine

learning model.

• Relevancy Determination: It is not necessary to use all possible features to represent

a file. In different situations, the selection of features determines what files are more

relevant. Different investigate scenarios are tested in this research.

• Relevancy Score: This approach generates a relevancy score for each file encountered

on a disk image. A detailed description is provided in Section 3.7.4.

Machine Learning Model Training Process - As described, the machine learning model

is trained by known files, features extracted from each file, the file’s metadata, and the

file timelines. For example, the proposed investigation tool can select files by their size

range, MACB time period, etc. The proposed approach uses timeline events containing more

information the file system alone identifies out similar files. Similar files are those more with

comparable investigative value (pertinent or not).

Relevancy Score Generation - As shown in Figure 3.13, files for analysis are firstly checked

with the known database. Then the known relevant and benign files detected are used for

model training. This is different from many other applications in digital forensics whereby

models are trained for general usage, i.e., network intrusion detection, malware detection,

etc. In this research, the user actions (i.e., timeline events) on all encountered files are

used as input. Similar files are then identified by the associated user behavioural actions.

Therefore, the model is trained specifically for each case, i.e., potentially for each image under

investigation.
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Figure 3.13: Relevant File Prioritisation Approacha

aDu, X., Le, Q., and Scanlon, M., Automated Artefact Relevancy Determination from Artefact

Metadata and Associated Timeline Events, The 6th IEEE International Conference on Cyber Security

and Protection of Digital Services (Cyber Security), Dublin, Ireland, June 2020.

3.7.1 An Overview of the Workflow

This research assumes files with similar usage pattern are more probably in the same class

(illegal or benign). For example, files A.doc and B.doc are created by Microsoft Word

on the same day (02/09/2020), files C.pdf and D.jpg is downloaded from Google drive on

24/10/2019. If A has been detected by the hash database as illegal, B is more relevant to the

investigation; If D is detected as an illegal file, C should be ranked at a higher priority than

A and B.

Figure 3.14 illustrates the designed workflow as could be applied in an investigation. From

a raw format image copy to the prediction result, the process is completely automated. The

processing is broken down in four steps:

1. Dataset Generation - As has been discussed in Section 3.6, the developed toolkit

is used to generate the training dataset each artefact’s format for machine learning

modelling.

2. Filtering - This works through comparing the hash with the known database, which

will split the file artefacts into two categories; known file artefacts and unknown file

artefacts.

3. Training the Model - Training a machine learning model using known file artefacts.
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Figure 3.14: Workflow of Relevant File Prioritisation in an Investigationa

aDu, X. and Scanlon, M. Methodology for the Automated Metadata-Based Classification of Incrim-

inating Digital Forensic Artefacts, The 12th International Workshop on Digital Forensics (WSDF),

held at the 14th International Conference on Availability, Reliability and Security (ARES), Canter-

bury, UK, August 2019.

4. Prediction - The categorisation of the previously unencountered files are predicted by

the trained model (i.e. if it is relevant or suspicious to the investigation).

Through the above process, from the raw image input, an initial automatic analysis result can

be performed automatically. The output is a prediction of each artefact as suspicious or not

to assist the investigator in identifying the file artefacts likely relevant to the investigation.

3.7.2 Relevancy Score Determination

There are different options for the input data to determine the relevancy score. They can be

applied to different analysis scenarios and investigative objectives. When the files requiring

analysis are different types, only the metadata and timeline events are selected as the input,

the possible features extracted from pictures and text are different. In the other scenario, the

analysis files to be analysed are the same type, the file data can be part of the input features

for training the model. There are different approaches to combine these two sources of input,

as shown in Figure 3.15.

• RS1 - Metadata and/or Timeline Event: These input features can detect files with

similar usage patterns, as metadata and timeline events record the user’s behavioural

actions on files. It is for a single type of file relevancy determination, e.g., in child

abuse material investigation, the analysis would focus on image files.

• RS2 - File Data: The most common application is the use of file data as input. It has
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Figure 3.15: The Input for Relevancy Score

been successful in training models for recognising objects recognition in pictures (e.g.,

cat, dog, etc.). Therefore, it is easy to think to use to train a model to recognise gun

or drug. The application in digital forensics can fit the investigation problem better.

The analysis is performed on user-created files such as documents, images, videos,

audios, etc. It takes advantages of NLP and computer vision (CV) techniques to

analysis documents and pictures. For example, the pre-trained model ResNet-507

model can be applied on the collected dataset. The output can be used directly or as

an input (together with metadata and timeline event) to the machine learning model.

• RS3 - Metadata and/or Timeline Events plus Output of Deep Learning

Model: The file content can be used as input to identify similar based on both file data

and metadata. Firstly, train an image classification model. The output of this model

can be used for the input of the next. Classifications can be converted to relevancy

scores and subsequently used as the input for the next stage of machine learning model

training. The file data, in this case, has less influence in determining the final relevancy

score compared to these approaches.

• RS4 - Relevancy Score 1 plus Relevancy Score 3: The two scores can be directly

summed to be used as the files’ final relevancy scores. File data, in this case, has more

influence in determining the final relevancy score comparing to RS3.

3.7.3 Adding Pre-trained Models

As described, file data (document or pictures) can be automatically processed by machine

learning models. The application of deep learning has improved the performance in computer

vision. Training deep learning models is expensive. However, there are a variety of pre-trained

models available. It is called “Transfer Learning”, which enables the use of pre-trained models

7https : //pytorch.org/hub/pytorchvisionresnet/
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from other projects. Applying a pre-trained model, or developing models to work together

with pre-trained models can be used for feature enhancement.

ResNet-50 is a convolutional neural network that is 50 layers deep. The project ships with a

pre-trained version of the network trained on more than a million images from the ImageNet

dataset. The pre-trained network can classify images into 1000 different object categories,

e.g., keyboard, mouse, pencil, and animals, etc.

The prediction result by the pre-trained models could be used in the approach in two ways:

one is to be used for feature expansion, i.e., to add labels to multimedia content, the other is

use the result to the relevancy score generation function.

3.7.4 Relevancy Score Generation

Known files detected during the acquisition phase are used as training data for (supervised

learning with binary classification). Subsequently, the unknown files are classified by the

model to relevant/not relevant. In general, classification algorithms are used with discrete

data, and the output variable must be a discrete value. Classification algorithms are used to

predict/classify the discrete values such as male or female, true or false, spam or not spam,

etc. A relevancy score to rank artefacts requires a regression model.

In the context of most investigative scenarios, in order to guarantee not missing out on any

important information, a relevancy score based ranking for investigation is more helpful.

However, regression algorithms are used to predict continuous values such as price, salary,

age, etc.

In linear models, the target value is modelled as a linear combination of the features. The

linear classification functionality of scikit-learn8 offers functions for coefficients. Coefficient

of the features is the decision function for optimal modelling. As shown in Figure 3.16, this

research uses the coefficient for relevancy score calculation.

• Classification/Regression Algorithms

There is a range of algorithms that can be applied both for both classification and

regression problem. They are evaluated for relevancy score generation in this research

and include, SVM, Decision Tree and RandomForest.

• Relevancy Score Generation

Coefficients can be obtained from linear modelling, i.e., Linear SVM, Logistic Regres-

sion, etc. Random Forest modelling also affords flexible determination of the signifi-

cance of each feature. The sample script below shows how the coefficients of the model

are acquired:

8https://scikit-learn.org/
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Figure 3.16: Relevancy Score Generation

from sklearn import svm

svm = svm.SVC(kernel='linear')

svm.fit(features, labels)

svm.coef_

To use relevancy determined combined with output from the pre-trained image classification

model, the predicted result can be used to determine the relevancy score.

combined RS = 0.8 ∗ event RS + 0.2 ∗ content RS (3.1)

This approach is mainly for detection of files with similar actions to illegal files, so only 20%

of the score is determined by the file content. The weightings can be adjusted as necessary

when it is applied in the real world investigation.

3.8 Summary

This Chapter presented a methodology for automated digital evidence processing approach

designed to compliment on a deduplicated digital evidence acquisition and storage system.

This work applied the existing data deduplication approach in digital evidence processing

but improved the operation by ensuring a forensically sound reconstruction component. The

file data hashing as it is acquired facilitates the detection of known illegal files at the earliest

phase of the investigation possible.

The proposed analysis approach for ranking files by the IR relevancy to assist investigators

can help shorten the analysis process. Files acquired by the system are categorised as known

benign, known illegal, and unknown. Machine learning biased modelling classifies files into
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relevant or benign. A relevancy score is generated by the trained classification model. Both

the data used for training is classified by expert human analysis. It’s an iterative model that

is frequently updated during the analysis phase using both human expert classifications, and

human expert acceptance/denial of the relevancy predicted.

A large number of disk images are required for testing the methodology to evaluate its viability

performance and stability. TraceGen solves the problem of arduous, manual generation of

disk images with realistic user traces and wear-and-tear. It emulates user actions and file

operations executed on suspect devices. EviPlant employs evidence packages in order to make

the generation of many different disk images more efficient. In addition, it saves storage space

on disk and makes network transmission of disk images easier.
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Chapter 4: Test Disk Image Generation

4.1 Overview

Digital forensic test images are commonly used across a variety of digital forensic use cases

including education and training, tool testing and validation, proficiency testing, malware

analysis, and research and development. Using real digital evidence for these purposes is

often not viable or permissible, especially when factoring in the ethical and in some cases

legal considerations of working with individuals’ personal data. Furthermore, when using real

data it is not usually known precisely what actions were performed when i.e. what exactly

was the ‘ground truth’. The creation of synthetic digital forensic test images typically involves

an arduous, time-consuming process of manually performing a list of actions, or following a

script ‘story’ to generate artefacts in a subsequently imaged disk. Besides the manual effort

and time needed in executing the relevant actions in the scripted scenario, there is often little

room to build a realistic volume of non-pertinent wear-and-tear or ‘background noise’ on the

suspect device, meaning the resulting disk images are inherently limited and to a certain

extent overly simplistic.

This chapter introduces the generation of test disk images containing realistic features includ-

ing regular wear-and-tear, background noise, and the actual digital traces to be discovered

during the investigation. The disk images used in this research are Windows 7/8/10 disk im-

ages. Emulated wear and tear actions (surfing the Internet, installing software, downloading

files from browsers, etc.) were conducted in a virtual environment.

4.1.1 Choice of Technologies

The virtualisation technology used for this research was VirtualBox, owing to its cross-

platform compatibility. This could also be said for VMware, but as VirtualBox is freely

available, this approach could be used by any organisation regardless of any budget limi-

tations. Qemu is another option, but the setup process is slightly more complex and the

intention was to produce images automatically that could be easily later supplemented with

later human-generated actions.

The operating system chosen as the guest is Microsoft Windows as this still represents the

majority of end-user computers1, and therefore the majority of systems seen in digital forensic

187.36% at the time of writing (https://netmarketshare.com)

73



laboratories.

4.2 File Data for Disk Image Creation

The Govdocs12 dataset from digitalcorpora.org was used as a source of benign files in

this research. It consists of almost 1 million freely-redistributable files of various formats.

Types of files within the “seized device” for analysis are:

• Documents: txt, doc, pdf

• Pictures: png, jpg

• Container: zip

• Python scripts: py

For picture content, images from Google Images, Wikipedia and a data set for child age

estimation were used. Pictures are downloaded from the results of keyword searching from

Google (as shown in Figure 4.1). These files are used for testing the deep learning classification

model.

Figure 4.1: Sample Pictures Used to Populate Test Image

2https://digitalcorpora.org/corpora/files
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4.3 EviPlant: Creation, Manipulation and Dis-

tribution Disk Image

4.3.1 Overview

Typically, the creation of digital forensic challenges requires an overly arduous effort on the

part of the user/educator to ensure their viability. In addition, the storage and distribution

step also requires significant time. EviPlant is a system designed for the efficient creation,

manipulation, storage and distribution of challenges for digital forensics education and train-

ing.

The system relies on the initial distribution of base disk images, i.e., images containing solely

base operating system installations. Firstly, the base system is booted up, and the desired ac-

tivity is manually conducted. Subsequently, a “diffing” of resultant image and the base image

is performed (“diffing” in this context stemming from the diff tool in *nix systems [157]).

This diffing process extracts all modified artefacts and associated metadata and stores them

in an “evidence package”. Evidence packages can be created for different personae, different

wear-and-tear patterns, different emulated crimes, various levels of complexity, etc.

4.3.2 Evidence Packages

The fundamental building blocks for EviPlant are evidence packages. The current ap-

proach typically requires the maintenance of large collections of complete disk images. Using

EviPlant, the approach changes to creating and curating a variety of evidence packages. The

creation of these evidence packages relies on the comparison or diffing of two disk images.

The diffing tool is provided with two inputs; the base image used to emulate the specific

user activity and the subsequently modified image containing all traces of the “crime”, wear-

and-tear, or persona emulated. The tool scans through the modified image and extracts

all modified and newly created artefacts (and their associated metadata) into an evidence

package, i.e., eliminating all artefacts from the modified image also present on the base image.

In this manner, evidence packages are capable of being created to capture small events, e.g.,

a boot cycle of the operating system, or large events, e.g., a complex usage pattern to build

a complete emulated user persona over an extended period of time.

Evidence packages contain all the digital artefacts (files, file fragments, slack space, etc.)

and associated metadata created during the emulation of the crime. The artefacts contained

within evidence packages fall into two categories, which combine to capture all the necessary

data modified from the base image after performing a specific task or set of tasks:
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1. “Black Box” Artefacts – These are simple artefacts encapsulating a modification

from the base image. In order to use these evidence packages in a classroom deploy-

ment scenario, nothing need necessarily be understood of their construction in order

to inject them into the base images. The answer set for these challenges is created by

the educator (effectively the script they followed while performing the actions to be

discovered).

2. “Reverse Engineered” Artefacts – The artefacts and metadata contained within

this package are understood in their entirety – effectively reverse-engineered. As a re-

sult, their manipulation is possible, e.g., SQLite databases for Internet browsing history,

VoIP application call logs, etc. In the scenario of using multiple evidence packages for

a single challenge, packages with overlapping artefacts must be manipulable to ensure

that the traces from each package are integrated into the final disk image.

Evidence Package for Storage Savings and Easier Distribution

Figure 4.2 shows the storage-saving by using this approach. A complete disk image of Win-

dows 7 with user traces is 9.99 GB. An evidence package is generated (size is 2.06 GB)

preserving the modified files from the base image. When using zip for the evidence package,

it can be compressed to 203 MB. This evidence package is easier to store and distribute.

Images with complete user traces can be re-created by using a base Windows 7 image and

the evidence package. When many disk images are stored using this approach, a substantial

reduction in storage space can be achieved.

4.3.3 Testing of Diffing and Injection

To demonstrate the viability of the proposed system, the two main components of the system

(namely the diffing tool and the injection tool) were developed in Python using the pytsk3

library for disk image processing. pytsk is a python wrapper for The Sleuth Kit4. For testing

purposes, a Windows 10 virtual machine was created and used as the base image. For each

test, the base image was cloned, booted and user activity was emulated on the machine.

In terms of the testing of the diffing tool, a variety of usage patterns were tested ranging from

a single boot cycle of the virtual machine to an extended session involving internet browsing,

application installation, file downloading, multiple boot cycles, etc. In each scenario, the

diffing tool discovered all of the modified artefacts relating to recorded usage, including a

number of operating system files that were modified during the regular usage of the virtual

machine (e.g., $MFT, pagefile.sys, etc.). These artefacts and associated metadata were

output into an evidence package.

To assess the injection methodology, the base operating system was booted and the injection

3https://github.com/py4n6/pytsk
4http://www.sleuthkit.org/
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diffing_tool.py

Figure 4.2: Diffing Tool Storage Savings for Evidence Packages

tool was run locally on the live machine to perform a logical injection of the artefacts. The

injection tool took each individual artefact and added it to the virtual disk. In the eventuality

of conflicting artefacts, the version from the base image was overwritten by that from the

evidence package. To demonstrate the viability of the results generated disk images and to

confirm the injection of the necessary artefacts, these images were subsequently analysed using

EnCase and, unsurprisingly, the pertinent planted evidence was identifiable and recoverable.

4.3.4 Summary

EviPlant provides solutions to distribution of digital forensic images through the use of ev-

idence packages and makes the creation of complete digital forensic challenges easier. More

digital forensic challenges are capable of being stored in the same disk capacity than if entire

disk images were used.

Manually creating background noise in a disk image to increase its benign activity can include

simple file browsing and artefact generation over multiple artefact types, e.g., injecting web

history, file system artefacts, event logs, registry files. Maintaining these artefacts to be

evidentially consistent with each other is a difficult manual tack. The EviPlant approach,
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while potentially increasing the reusability of manual effort, does not address the issue of

reducing the manual effort in creating the evidence packages to begin with.

4.4 TraceGen: Automated User Action Emu-

lation

4.4.1 Overview

TraceGen’s focus is to address the aforementioned requirement for manual user activity em-

ulation. TraceGen is an automated system focused on the emulation of user actions to create

realistic and comprehensive artefacts in an auditable and reproducible manner. The frame-

work consists of a series of actions contained within scripts that are executed both externally

and internally to a target virtual machine. These actions use existing automation APIs to

emulate real user behaviour on a Windows system to generate realistic and comprehensive

artefacts. These actions can be quickly scripted together to form complex stories or to emulate

wear-and-tear on the test image over a long period of time.

4.4.2 Virtual Machine Configuration

The automation is performed using a series of Python scripts to perform user actions. Python

was chosen for its advantages for rapid prototype development and the large range of libraries

available for emulating user activity. The script executes on the host and controls the guest

machine; from the boot, performing internal and external actions, to shut down. Internal

scripts are executed inside the VM to automate internal user actions.

In addition to the internal and external scripts and the stories, at present, the VM must also

be configured in a specific manner that is conducive to simulated user actions. The following

changes were made to the VM to allow reliable user action emulation: 1), install VirtualBox

Extension Pack on Host OS; 2), install Guest Additions on Guest OS; 3), install Python on

Guest OS; 4), install related Python libraries and any other dependencies, e.g., SendKey; 5),

install app needed in the action emulation on Guest OS, e.g., Google Chrome. There are also

several other more subtle changes that are needed. For example, for now, it is necessary to

auto-login the user, rather than providing a password. Also, as the system may be running

for several days, the power settings of the guest and the host were modified to avoid sleeping

or powering off displays as this could interfere with the user emulation process.
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4.4.3 File Provenance and Interactions

The generated disk should contain user files with usage pattern. Applications are installed

on the guest OS, e.g., Google Chrome, WinSCP5, Sublime Text6, etc.

User Files

User Files

User Files

user Files

User Files

User Files

Figure 4.3: User Action of Files on the Disk

There are several developed dynamic actions that can combine together to perform more

complex, compound interactions to files on a disk:

• Creation

– Downloaded from the web

– Downloaded from WinSCP

– Created by Notepad

• Access

– Opened with SublimeText

– Notepad

– web browser

• Modification

– edited by SublimeText

– edited by Notepad

5The main function of WinSCP is secure file transfer between a local and a remote computer
6Sublime Text is programming focused text editor
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• Other Operations

– Executed by python

– Zip or unzip

4.4.4 User Action Emulation

pywinauto facilitates the automation of the Windows GUI using the Win32 API. It allows

Pythonic interaction with GUI components. Example usage of the pywinauto module to

launch Chrome by opening the Start Menu and typing ‘Chrome’ followed by the enter key is

shown in Figure 4.4.

Figure 4.4: User Action Emulation: Launch Chrome

Figure 4.5 presents the function for transferring data into the virtual machine, through down-

loading files from a server. It can be used for file creation on the disk.

Facilitating easy new module development is paramount for the success of this framework.

Currently, modules have been developed to:

• generates a new file with notepad in a specific location on the disk with customised

content;

• access, edit, delete a specific file;

• copy files from one directory to another;

• use Google to search for a particular keyword, and then viewing a subset of the results

over a defined period of time;

• send and read emails from Gmail accounts (Python module for using the standard

SMTP and IMAP email protocols).

4.4.5 Continuous Usage Trace Generation

There are two modes by which a story can be executed. The first is the live simulation mode.

In this mode, the controlling script checks the time for the next action to be performed
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Figure 4.5: The Method to Create Files on the Disk

against the host (assumed to be correct) and the actions are performed when the scheduled

time arrives. This means that the actions are carried out in real-time but in an automated

way. This mode provides the advantage that as all actions are performed in real-time resulting

in all timestamps, whether from the virtualised system or remotely fetched content, will be

consistent. The disadvantage is that to generate several months of activity, it would take

several months. Therefore, the second mode is a compressed-time simulation. In this mode,

for each action, the clock of the virtual machine is adjusted to the specified time, then the

action carried out. This has the disadvantage that there will be timestamp artefacts that are

not consistent, but it does allow a large amount of activity to be synthesised in a very short

period of time.

The function in Figure 4.6 shows how the developed method facilitates the setting of the

system date and time for action emulation.

Evaluation of the Compressed-time Simulation Mode

Setting the system time before booting the machine enables the emulation of usage over a

much longer period, i.e., weeks, months or years of activity emulated in just hours or days.

An input CSV file defines the actions to be executed on the machine. A random method
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Figure 4.6: The Method to set the System Time to a Given Date and Time

can be used to make sure repeated operations would occur at different times. The same

component or compound actions can result in different artefacts being generated due to the

specified arguments, e.g., which file to open.

Two sample experiments are outlined below:

1. Setting the system time to a point in the past and repeat simple actions, i.e., 1) set

the system time; 2) boot the VM; 3) create a new file; 4) shut down the VM.

2. Setting the system time to a point in the future, repeat more complex actions at each

time: 1) set the system time; 2) boot the VM; 3) create a new file; 4) copy *.png file

from one folder to another; 5) use browser 6) run WinSCP and log in; 7) shut down

the VM.

The scheduled user actions are saved into an operation list in a CSV file, as shown in Fig-

ure 4.7. For running each action, external control, internal action and associated parameters

are required.

Figure 4.7: Sample Input CSV File

Analysis of the Trace Generation by a Comparison of Timeline Events

Aforementioned two sample experiments running by each time before booting the VM, the

system time is set to a new date. The operations were repeated 20 times, each time the date
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was set to a different day in September 2019, assuming the computer was not used every day.

Two “Super Timeline”7 of the disk were generated for the disk at before and after running

TraceGen on the VM. A comparison of the two timelines can find out changes in the device.

One interesting analysis is on the diverse value generated for each property. The diverse

value for the date relates to how many instances days this machine was used, i.e., as long

as the machine is being used, correlating timestamps are generated. The file name count

represents how many different files are retrieved from in the machine. Inode count represents

the file number on file system level. Table 4.1 shows the value counts for each of these different

properties. Before the story was executed, in the generated timeline, the number of timestamp

dates is 189. After the story’s execution, it is 204. The increment on the count of filenames is

11,099 representing the number of new were generated during the story’s emulation. Table 4.2

shows the increment of events from each source. These results demonstrate the effectiveness

of this tool for the generation of background noise user traces over time.

Event

Property
Before Story After Story Increment

date 189 204 15

file name 90,941 102,040 11,099

inode 31,350 36,139 4,789

Table 4.1: Volume of Filesystem Modifications Before and After Story Execution

Event

Source
Before Story After Story Increment

EVT 183,628 246,653 63,025

REG 81,181 125,598 44,417

WEBHIST 27,869 30,689 2,820

Log 2,753 3,160 407

PE 1,019 1,032 13

LNK 621 852 231

OLECF 348 348 0

Total 297,419 408,332 110,913

Table 4.2: Event Counts from Different Sources

Two sample continuous running tests are outlined. The first is to set the system date and

time in the past and the second is to set it to a point in the future. These were dates in

September 2019 and October 2019 respectively. Figures 4.8 and 4.9 shows the number of

event changes detected for each day. It can be seen that the day configured in the story

results in corresponding changes on the timestamp. Also, as can be seen, the number of

timestamps increased after the story’s execution emulation. This is a result of later actions

updating the same specific files modified by previously executed actions.

7A super timeline contains timestamps from the filesystem and various log files on a device.
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Figure 4.8: Event Counts of Each Day in Septembera

aDu, X., Hargreaves, C., Sheppard, J., and Scanlon, M., TraceGen: User Activity Emulation for

Digital Forensic Test Image Generation, Forensic Science International: Digital Investigation, ISSN

2666-2825, September 2020.

4.4.6 Summary

TraceGen enables the creation of a substantial amount of background noise, wear-and-tear,

and other non-pertinent actions on the device. In addition, complex stories can be quickly

and easily performed on the virtual machine. These stories can be queued or looped to

create substantially large traces as required. The experimentation and analysis presented

in this section verified that the TraceGen framework can operate in a viable manner. This

framework enables 1) a large amount usage traces generated in a compressed time period, 2)

usage traces generated at a specific date in time, and 3) the generated actions can be across

a diverse set of event categories.
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Figure 4.9: Event Counts Increment of Each Day in Octobera

aDu, X., Hargreaves, C., Sheppard, J., and Scanlon, M., TraceGen: User Activity Emulation for

Digital Forensic Test Image Generation, Forensic Science International: Digital Investigation, ISSN

2666-2825, September 2020.
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Chapter 5: Deduplicated Digital

Evidence Processing

The goal of implementing the proposed deduplicated method of acquisition is focused on

the reduction of data to be transported, stored and analysed. The system is split into two

processes that work together to both reduce the time taken to get from the acquisition stage to

making the data available as evidence while reducing the volume of storage required for each

acquisition. Eliminating the need to transfer duplicated files from every device encountered

both speeds up each acquisition and removes the need to analyse the files that have been

marked as a duplicate. The process is designed to be simple to execute facilitating a minimal

amount of training required to being to perform acquisitions removing the need for specialists

on-site to collect the data.

5.1 Overview

To begin the data reduction, each file contained within the suspect device must undergo

preprocessing. As the system begins to discover each file, a line of communication is opened

between the client and the server. As each file is discovered a hash is calculated; which is then

transferred to the server. This is checked against a database of all files previously discovered

and is only uploaded if it has not been acquired before. Whether a file is a duplicate or not,

its associated metadata is uploaded, which can be used in both the file’s analysis or in the

reconstruction of the entire disk, as outlined in Figure 5.1.

This system employs MongoDB1 to store metadata of forensic images and the files are stored

on disk. pymongo is a Python library for interfacing with MongoDB and is employed by this

system. The data preserved (image metadata, file metadata and file artefacts on the server)

has been introduced in Section 3.4.

1MongoDB is a free and open-source cross-platform document-oriented database program.
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Figure 5.1: Deduplicated Evidence Acquisition Processa

aDu, X., Ledwith, P., & Scanlon, M. (2018). Deduplicated Disk Image Evidence Acquisition and

Forensically-Sound Reconstruction. The 17th IEEE International Conference On Trust, Security And

Privacy In Computing And Communications (IEEE TrustCom-18).

5.2 Prototype Setup and Test Data

The prototype system was built on a server with Ubuntu 16.04.2 LTS operating system,

Linux 4.4.0-121-generic kernel, and x86-64 architecture.

For testing the performance of evidence acquisition and reconstruction, disk images were

created with various file systems. Test data specifics are shown in Table 5.1. The images

were created through dd copying data from a USB drive. Various duplication ratios were

created to test the performance of duplicated data.

5.3 Results: Average Acquisition Speed

Through iterative acquisitions of the images, measurements of the acquisition speed and time

were recorded, alongside the acquisition date and time, and the encountered duplication ratio.

Figure 5.2 shows the average acquisition speed for each image. Each of the created images

was acquired several times. Analysis of the results identified three different factors influencing

the speed:

2Du, X., Ledwith, P. and Scanlon, M. (2018). Deduplicated Disk Image Evidence Acquisition and

Forensically-Sound Reconstruction. The 17th IEEE International Conference On Trust, Security And
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No. Image Name Image

Size

No.

of

Files

File

Sys-

tem

Note

01 A01.dmg

A02.dmg

A03.dmg

144

MB

477

491

513

FAT Disk image all with pictures

02 D201.raw 2 GB 36 NTFS Disk image with pictures, videos,

audios and documents

03 D801.raw 8 GB 234 NTFS Created through dd from 8 GB USB

key with pictures

04 D1601.raw

D1602.raw

D1603.raw

16

GB

244,025

24,412

24,413

NTFS Created through dd from 16 GB

USB key with pictures, three sep-

arate images with specified number

of files

05 Windows PE.img 2 GB 1,645 NTFS Created by install Windows PE on

USB key and then dd

06 Windows7-1.raw 10

GB

48,401 NTFS Created by qemu-img converting

vhd to raw

07 Windows7-2.raw 10

GB

49,295 NTFS Incorporates operations (surf Inter-

net, create new documents) on vir-

tual machine

08 Windows7-4.raw 10

GB

50,382 NTFS Incorporates operations (install

software, create new documents) on

virtual machine

09 Windows7-3.raw 10

GB

58,547 NTFS Incorporates operations (surf Inter-

net, create new documents) on vir-

tual machine

10 Windows8.raw 10

GB

81,163 NTFS Original Windows 8 image

Table 5.1: Test Disk Images

1. The Image - The overall size of the image, the number of files on the image, and the

ratio of small files compared with large files;

2. Duplication Ratio - This determines how much data has to be transmitted to the server;

3. Execution Environment - Network bandwidth, client computer processing speed, stor-

age hardware performance, etc.

Figure 5.3shows a comparison of two speeds, one is the actual hardware read-speed, the other

is the effective speed, i.e., the throughput of the system factoring in the speed enhancements

Privacy In Computing And Communications (IEEE TrustCom-18).
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Figure 5.2: Evidence Acquisition Speed of Each Image 2

achieved through deduplication. This effective speed is consistently faster than the actual

speed. The formulas below demonstrate precisely what constitutes these two speeds (the

reduced size is the original data less the duplicated data which need not be re-uploaded).

actual speed = reduced size /time taken (5.1)

effective speed = image size /time taken (5.2)

Data deduplication improves system speed significantly. Figure 5.4 illustrates that the higher

the duplication ratio, the faster the effective acquisition speed. Test results show the speed

can be ten times the disk-read speed when the duplication ratio is approximately 90%.

When interpreting the above acquisition speeds, it is important to note that some preprocess-

ing of the data has already taken place in addition to the acquisition. For example, the file

2Du, X., Ledwith, P., & Scanlon, M. (2018). Deduplicated Disk Image Evidence Acquisition and

Forensically-Sound Reconstruction. The 17th IEEE International Conference On Trust, Security And

Privacy In Computing And Communications (IEEE TrustCom-18).
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Figure 5.3: System Speed and Efficient Speed Comparison of Each Image
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Figure 5.4: Duplication Ratios and their Impact on Speed

system metadata for each artefact has already been extracted and recorded in the database

including its path, filesize, hash, block locations, etc. It is also possible to highlight known
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illegal files during the acquisition phase of the investigation, flagging pertinent information

to the investigator at the earliest stage possible.

5.4 Results: Storage Space Saved

Data deduplication not only speeds up data transmission but also saves system storage space

requirements. The system is designed for a big volume of data storage. As the volume of

data collected grows, the more duplicates are encountered, the more storage is saved. In this

test, the first acquisition of all the images, the system acquired 20% extra storage space,

because the file slack and unallocated space data on the disk are acquired by the system.

When 1TB of digital evidence had been acquired, the deduplicated system saves over 32%

storage space. As an increased number of artefacts are acquired, more storage savings will

be possible. Figure 5.5 shows the storage-saving as the number of acquisition increase.

Figure 5.5: Storage Saving as Number of Acquisitions Increasea

aDu, X., Ledwith, P., and Scanlon, M. (2018). Deduplicated Disk Image Evidence Acquisition

and Forensically-Sound Reconstruction. The 17th IEEE International Conference On Trust, Security

And Privacy In Computing And Communications (IEEE TrustCom-18).

5.5 Results: Image Reconstruction

Hundreds of validated disk image reconstructions from the deduplicated data store have been

successfully performed. Figure 5.6 shows the average speed of each disk image reconstruction.
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The speed varies due to the aforementioned influencing factors. The fastest individual recon-

struction attempt during testing was over 150 MB/s. The average of all the reconstruction

speed is 43.78 MB/s, which can be improved upon in the future through the employment of

RAID storage enabling faster disk I/O. Disk image reconstruction may only be necessary if

incriminating evidence is discovered. The Windows Preinstallation Environment (PE) image

used is faster than Windows image as the number of small files is significantly less. D Image

was faster than each of the others with average reconstruction speed 113.67 MB/s due to it

containing a higher proportion of large files.

Figure 5.6: Reconstruction Speed of Each Imagea

aDu, X., Ledwith, P., and Scanlon, M. (2018). Deduplicated Disk Image Evidence Acquisition

and Forensically-Sound Reconstruction. The 17th IEEE International Conference On Trust, Security

And Privacy In Computing And Communications (IEEE TrustCom-18).

5.6 Tests on an Improved Approach for Data

Acquisition

The acquisition speed of the system varies due to the number of files, between 1 MB/s to 10

MB/s. A large number of small files (less than 100 KB) significantly slows down the data

acquisition speed, because it increases the interactions between the client and server.
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A local client-side data store can be implemented to check the existence of duplicates re-

sulting in minimising the network traffic. The client acquires the complete known hash list.

numpy.setdiff1d3 is used for detection of known/unknown files through comparing the two

hash value lists (hash values from the central database and hash value of files on the disk).

In addition, the extracted unknown data (files, file slack space and unallocated space) can

be compressed and sent to the server at once. This can reduce the communication overhead

between the client and the server. This results in the amount of data to be can dramatically

reduce.

Figure 5.7 shows the workflow of the improved deduplicated data acquisition approach. The

steps of the approach are as follow:

Client

Server

Known Files' Hash Value

1. Known Files Detection
2. Unknown Data Extraction
3. Extracted Data Compression

Data Transmission
1. Data Preservation
2. Disk Image Reconstruction

Figure 5.7: An Improved Approach for Deduplicated Data Acquisition

1. The client connect to MongoDB on the server and acquires the known files’ hash values;

2. The client extracts the target disk metadata and calculates the files’ hash values;

3. The client compares the disk hashes and the list of hashes from the server; known good

and known illegal files can be detected at this stage;

4. The client extracts all unknown data and compresses the data;

5. The client sends the compressed data to the server;

6. The server preserves metadata and compressed file;

7. A verifiable forensically-sound disk image can be reconstructed whenever it is needed.

5.6.1 Results

The disk image Windows10.img is used for this test. Table 5.2 shows the size of data and

the number of files. Originally, the Windows 10 disk contains 50,430 files, the size is 9.5 GB.

3Find the set difference of two arrays. Return the unique values in ar1 that are not in ar2.
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The deduplicated system extracts 86,806 artefacts from the disk. The number of artefacts

increased because file slack space is preserved as an artefact. The size of the deduplicated

file folder is 7.6 GB. 7z 4 is applied to compress the deduplicated files; reducing the size of

the data to 1.92 GB. The compressed file then is sent to the server.

Data Size Number of Files

Original Disk (Windows 10) 9.5 GB 106,970

Deduplicated Files 7.26 GB 86,806

After Compression 1.92 GB 86,806

Table 5.2: Disk Image Compression Test

Experiments on the test image were conducted and the results for each step are outlined

below.

1. Metadata Extraction and File Hashing

The file system metadata extraction is implemented by pytsk ; the file hashing uses

python hashlib. This process on the test disk image took 3 minutes 41 seconds on

average across multiple tests.

2. Known/Unknown Files Detection

In this test, the number of known files from the server is 148,405; the number of files

on the disk is 106,970. It takes 1 minute 52 seconds to detect the unknown files list,

resulting in 36,931 files being identified as unknown by the system.

3. Compressed File Transmission to the Server

pysftp5 is applied for file transfer to the server. The time taken is 16 minutes 42 seconds

to transfer the test disk image (9.5 GB original, 1.92 GB after compression). This speed

is limited by the network used. The network of the client machine used for this test is

28.6 MB/s for download and 2 MB/s for upload.

Data compression allows further reduction of the amount of data. The test was conducted

for remote digital evidence acquisition; this approach can also work for on-scene data collect.

5.7 Summary

This research explores a novel approach to collect digital evidence from a variety of devices

and evaluates the storage requirements and speed through several forensically-sound evidence

47-Zip is a file archiver with a high compression ratio.
5pysftp provides a simple interface to SFTP.
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acquisitions. The factors that influence the performance of the proposed system were also

evaluated. From the analysis of the results, the summary is as follows: i) Acquiring data

from suspect devices is complete and verifiably accurate; ii) Forensically-sound complete disk

image reconstruction was achieved for all test data; iii) As a desirable product of the dedu-

plicated acquisition process, evidence preprocessing has also taken place including metadata

extraction and artefact hashing; iv) The performance is better for disk images containing a

high proportion of large files; for complete operating system images, the speed achieved shows

great promise for the technique, but still needs to be improved to be viable. In a remote

acquisition scenario, i.e., acquiring a forensic image over the Internet, the acquisition speed

is reasonable when compared with typical broadband upload speeds.

5.7.1 Benefits of this Approach

The benefits of transitioning to a cloud-based deduplicated digital forensic process model

include: i) always up-to-Date software resources; ii) pooled hardware resources; iii) resource

management; iv) flexible location and time. Additionally, a significant cost can be saved by

law enforcement by centralising the processing of digital forensic evidence.

Data reduction techniques can aid in decreasing the volume of data to be analysed. Data

deduplication is a data reduction technique used to optimise data storage and is particu-

larly efficient when common data is encountered. In addition, the benefits of employing the

proposed deduplicated digital evidence processing system include:

• On-the-Fly Incriminating File Detection - Known illegal artefacts can be detected

during the acquisition step, rather than after complete acquisition;

• A Model for Non-expert Acquisition and Analysis - This system can prelimi-

narily process digital evidence automatically;

• The Bigger, The Better - The more acquisitions performed using the proposed

system, the higher the expected duplication rate encountered and the faster future

acquisitions will become.

• Intelligent Digital Evidence Analysis - Stored expert analysis and previous data

analysis can be used to train AI activity/event patterns to detect suspicious file artefacts

automatically.
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Chapter 6: File Artefact Analysis and

Relevancy Prioritisation

6.1 Overview

Traditional, hash-based white-listing or blacklisting methods are usually the go-to automatic

solution for finding known file artefacts during a digital forensic investigation. If nothing

pertinent has been detected, the investigators will have to manually perform a keyword

search or filter to examine the artefacts. Using hash matching to detect illegal files can

only detect the precisely same file artefacts or artefacts with a minor change (i.e., by using

approximate matching). Usually, most of the file artefacts on seized devices are not pertinent

to the investigation. Manually retrieving suspicious files relevant to the investigation is akin

to finding a needle in a haystack.

A methodology for the automatic determination of suspicious file artefacts (i.e., file artefacts

that are pertinent to the investigation) is proposed to reduce the manual analysis effort

required. The associated metadata and digital events occurred are employed to extracting

features of each file artefact. Combining this with a centralised, deduplicated digital evidence

processing framework, illegal file artefacts encountered in previous cases are labelled as such

in the database. These files on the blacklist can be used to train classifiers for detecting

previous unencountered suspicious file artefacts in new cases.

This methodology is designed to work in a human-in-the-loop fashion. In other words, it

predicts/recommends that an artefact is likely to be suspicious rather than giving the final

analysis result.

6.1.1 Data Processing and Experimentation

Metadata and timeline events extracted from the test disk image prepares data for file arte-

facts relevancy analysis. In Section 6.2, the details of the metadata and disk image timeline

are introduced. In addition, the feature extraction technique used from each file artefact’s

timeline is also presented.

The approach is designed to prioritise file artefacts based on relevancy; experiments are con-
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ducted for both classification and prioritisation. Experimentation presented in this Chapter

includes: using a metadata-based model for relevancy classification, using image data as input

for training a classification model and using features from timeline events for file relevancy

prioritisation.

File Artefact Relevancy Classification

A supervised machine learning approach is employed, which leverages the recorded results of

previously processed cases. The process of feature extraction, dataset generation, and training

and evaluation are presented. In addition, a toolkit for data extraction from disk images is

outlined, which enables this method to be integrated with the conventional investigation

process and work in an automated fashion.

Image File Artefact Classification using a Pre-trained Model

Known file artefacts by the system can also be used for file data-based model training. The

trained model can be used to integrate with metadata and timeline event-based models. A

child abuse material case investigation data is emulated for the experimentation. For the

purpose of this experiment, any picture with a child’s face is classified as illegal; and all the

other images are classified as benign.

File Artefact Relevancy Prioritisation

To demonstrate the viability of relevancy prioritisation, three sample scenarios are used.

For each case, a set of features are used considering the different investigation focuses. The

features applied to the model are determined by the detected pertinent files and what specific

similarities/characteristics are looking for.

6.2 Metadata and Timeline from Disk Image

In the real-world investigation, the ground truth for training comes from expert human

classifications which any models are built upon. For experimentation, the analysis is on

generated disk images with emulated user files/actions. As shown in Figure 6.1, the process

of experimental dataset generation includes:

1. Emulating wear-and-tear of the device on a virtual environment and planting the “il-

legal” file artefacts on the test virtual machine. The “illegal files” resulting from the

emulated pertinent/illegal actions are hashed and preserved into an ‘answer’ file. This

answer file can be subsequently used to validate the accuracy of any subsequent clas-

sification; either from a student in an educational scenario or by a digital evidence

analysis tool or an automated evidence classification approach.
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2. Using the developed tool to extract file system metadata and a “super timeline” from

the disk image. This timeline contains the ground truth of the actions performed on

the disk image, which can be subsequently used to validate whatever classification tasks

that follow.

3. Merging the information about file artefacts from two sources (i.e., metadata and the

extracted timeline).

4. Labelling the file artefacts on the dataset based on the hash of file artefacts. Find the

“illegal” files by the preserved hash value in the answer file. Any remaining artefacts

(i.e., files not identified by the answer file as being illegal) are labelled as “benign”.

Labelled DatasetUnlabelled Dataset

Govdoc1 Files

MD5/SHA1 Hash of Files
Metadata

Digital Events

Pytsk

Plaso

Illegal Files

Windows Disk Images

Figure 6.1: Disk Images Generation and Data Processing for Analysisa

aDu, X. and Scanlon, M. Methodology for the Automated Metadata-Based Classification of Incrim-

inating Digital Forensic Artefacts, The 12th International Workshop on Digital Forensics (WSDF),

held at the 14th International Conference on Availability, Reliability and Security (ARES), Canter-

bury, UK, August 2019.

6.2.1 Timeline Generation and Analysis

Timelines contain more information than merely timestamps. The “super timeline” generated

by log2timeline consists of what happened, when it happened, on which artefact, and where

each digital event was recorded on the system. A complete list of the fields of generated

timeline are categorised and listed as follows:

• Fields describing the event:
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– date - Date that the event occurred;

– time - Time that the event occurred;

– MACB - Modification, access, creation and birth times;

– desc - A description of the timestamp object;

– short - A shorter version description of the timestamp;

– filename - The file object on which the event occurred;

– sourcetype - Description of the source type, e.g., “Opera Browser History”;

– source - A shorted form of the source, e.g., “WEBHIST”;

– type -Timestamp type, e.g., “Last Time Executed”.

• Fields describing the source:

– inode - The inode or MFT number of the parsed artefacts;

– user - The user owns the parsed artefacts;

– host - The host that the data came from.

• Fields describing the tool used:

– version - The version of the tool;

– timezone - Timezone where applying the tool generating the timeline;

– format - The parsing module.

• Fields describing other information:

– notes - An operational field;

– extra - A reference to a hash that stores all additional fields that might be used.

6.2.2 An Example Disk Image Timeline

This Section presents an overview of timeline generation. The full disk timeline reflects the

usage of the seized machine, the number of digital events discovered in total, the number of

files, the count of each digital events type, etc. psteal is a tool in Plaso for comprehensive

disk image timeline generation and the command used is:

psteal.py --source disk image name.dd -t l2tcsv -w timeline name.csv --partitions

all

A test disk image is Windows 7.raw, with “illegal” actions emulated in VirtualBox. From

the generated timeline, basic information about the created disk image can be retrieved; in

this scenario:

- Number of Events: 3,120,364
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- Number of Files: 307,971

The timeline consists of all level of digital events. pandas is used to further analyse the

timeline. To acquire counts of unique values the method count values() is used. On a

full disk image level, the source of digital events reveals information about the usage of the

device:

Event Type Count Event Type Count

Last Connection Time 3 Last Login Time 2

Scheduled to start 3 Last Shutdown Time 1

Last Password Reset 3 Last Used Time 1

Installation Time 2 - -

Table 6.1: Device Related Event

Digital events are related to file system metadata information. Table 6.2 shows the informa-

tion extracted in the sample scenario.

Event Type Count

Content Modification Time 962,293

Metadata Modification Time 551,502

Creation Time; Last Access Time;

Metadata Modification Time
343,906

Content Modification Time; Creation Time;

Last Access Time; Metadata Modification Time
302,467

Last Access Time 283,980

Creation Time 235,871

Content Modification Time; Creation Time 212,687

Creation Time; Last Access Time 45,898

Content Modification Time; Last Access Time;

Metadata Modification Time
35,818

Last Access Time; Metadata Modification Time 32,881

Table 6.2: File Artefacts Event - Common

There are some types of events that can only occur to a specific type of file as shown in

Figure 6.3. For example, Previous Last Time Executed could occur to an executable file, but

not to a document or image file. Another example is a File Downloaded event – this can only

occur if a file originates from a request to another machine through a network connection.

These special events can be used as features pertaining to associated file artefacts, i.e., true

or false as the feature value.
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Event Type Count

Last Visited Time 5,534

Previous Last Time Executed 1,107

File Last Modification Time 585

Start Time 410

Last Time Executed 401

File Downloaded 118

Document Creation Time 86

First Connection Time 85

Document Last Save Time 82

Content Deletion Time 58

Table 6.3: File Artefacts Event - Specific

6.2.3 File Timeline Generation

A file timeline is generated by searching for a filename as the keyword in the entire disk image

timeline. The extracted digital events are related to the file and gathered together to form a

file timeline.

As the code shown below demonstrates, the extracted digital events associated with a specific

file are preserved into a CSV file. NumPy (np) is the library used to search keyword occurrence

in each column of the disk image.

The disk image timeline generation is a necessary step in a conventional approach as well. The

file timeline generation time is the extra time taken for the proposed approach; it takes ap-

proximately 1 minute for each file. This process can be improved through parallel processing

in the future.

Figure 6.2: Method for File Timeline Generation
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6.2.4 An Example of File Timeline

Figure 6.3 shows an example file timeline. The fields in the file timeline include date, time,

MACB, source, sourcetype, type, short, desc, file name, and inode. The emulated investiga-

tion does not involve multiple devices/suspects, the fields of user, host, etc. are not included.

These fields can be useful in the investigation of real cases.

Figure 6.3: An Example of File Artefact Timeline

File timelines contain all the event information associated with one specific file. The infor-

mation can be used as features for input to machine learning models. For the example file

timeline shown in Figure 6.3, the following can be seen:

• the number of digital events (the higher the number of associated digital events for a

file indicates it is more frequently being used by the user);

• the file’s creation/last access time (the first/last time the file was used);

• the file timeline contains digital events from Chrome (Chrome could be the provenance

of the file);

• One associated event is from the registry;

6.2.5 Feature Extraction from File Timeline

Features can be extracted from the file timeline by a variety of approaches. Table 6.4 shows

example features can be used as input for machine learning model training.
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Features: Type and Value of Timeline Events

The value of fields MACB, source, sourcetype, type, etc. are categories. A file timeline could

include events with a different number of values. Features can be chosen from the type and

value which are characteristic of a file and the investigator is looking for files with similar

events. For example, this file is ‘png’ extension and contains events from ‘chrome’, ‘history’,

‘cache’. These words are used as a bag of words (BoWs) features.

Features: Words Count/Frequency

The “short” and “desc” are text, and can be represented by a BoWs (describing the occurrence

of words within it). Either count or frequency of words can be used. Term Frequency-

Inverse Document Frequency (TF-IDF) takes another approach, where it is believed that

high-frequency occurrences may not able to provide much information gain. In other words,

rarer words can contribute more weight to the model.

Feature Name Feature Type Feature Name Feature Type

Event Count Numeric Event Type (Least) Categories

Time (Most) Categories (Hour) Event Type (Most) Categories

Time (Least) Categories (Hour) Date (Least) Categories

Event Source Categories Date (Most) Categories

WEBHIST Numeric Word Frequency (Most) Categories

FILE Numeric Word Frequency (Least) Categories

LIN Numeric Word Occurrence (email) Numeric

REG Numeric Word Occurrence Numeric

Table 6.4: Example Features from a File Timeline

6.3 Metadata-based File Artefact Classifica-

tion

This Section presents an approach that is used to automatically identify suspicious file arte-

facts through the learning of a machine learning model. Several machine learning classification

algorithms including Logistic Regression, k-NN, SVM, Decision Tree, Gaussian Näıve Bayes

are evaluated in the experimentation.
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6.3.1 Example Scenario

In child abuse material possession/distribution investigation cases, pertinent digital evidence

often consists of multimedia content with similar file size, under similar directories, similar

creation times, last access times, etc. The proposed methodology aims to detect suspicious

files in such investigative scenarios. Hence, file artefacts with a similar number of associated

events, same file type, or under the same directory to known illegal file artefacts should likely

be predicted as suspicious/relevant.

Based on the purpose of the prediction task, the complete matrix of the features are:

• Depth of Dir - Integer representing the depth of the file directory (i.e., the number of

parent directories);

• File Extension - Categorical data type;

• Length of Name - An integer representing the filename’s length.

• Creation Time (y) - How many years old is the file;

• Creation Time (m) - How many months old is the file;

• Creation Time (d) - How many days old is the file;

• Creation Time (h) - How many hours old is the file;

• Size - The file size in KB;

• Count - The number of associated file events;

• Class - If the file benign or illegal. (the value is 0 for benign files, 1 for illegal files).

6.3.2 Datasets

Table 6.5 shows the generated datasets used in this experiment; mainly differing on the

percentage of illegal artefacts. The dataset is split into training and testing data.

Dataset No. of Artefacts Benign Artefacts Illegal Artefacts

Dataset1 42,326 41,339 987

Dataset2 55,296 49,328 5,968

Table 6.5: Datasets Used in the Experiment
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6.3.3 Evaluation Matrix

Due to the severe imbalance of the dataset, accuracy is not used to evaluate the performance.

Because a model can predict the value of the majority class for all predictions and achieve a

high classification accuracy, this model is not useful in the problem domain.

The performance metrics used are precision, recall and F1-score:

• Precision is the fraction of relevant instances among the retrieved instances:

precision =
TP

TP + FP
(6.1)

• Recall is the fraction of relevant instances that have been retrieved:

recall =
TP

TP + FN
(6.2)

• F1-Score is an overall measure of a model’s accuracy that combines precision and

recall:

F1-Score = 2× recall × precision (6.3)

6.3.4 Precision-Recall Curves with Average Precision

Scores

Precision-Recall curves summarise the trade-off between the true positive rate and the positive

predictive value for a predictive model using different probability thresholds. For getting

an overall understanding of the models’ performance, Precision-Recall curve (RP curve) is

visualised and average precision score (AP score) is calculated. AP score is calculated using

the library sklearn.metrics.average precision score 1, it summarises a precision-recall curve as

the weighted mean of precisions achieved at each threshold, with the increase in recall from

the previous threshold used as the weight:

AP Score =
∑
n=1

(Rn −Rn−1)Pn (6.4)

where Pn and Rn are the precision and recall at the nth threshold.

Comparing the average precision score, the performance of the tested models from best to

worst is Decision Tree, Gaussian Näıve Bayes, SVM, k-NN, and Logistic Regression respec-

tively.

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average precision score.html
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• Decision Tree - Figure 6.4 shows the RP curve of the employed decision tree algorithm

on dataset1. Observing from the AP score and precision, recall and F1 scores, the

Decision Tree classifier performs best for both datasets compared against other models.

In addition, the performance is stable on different datasets.

Figure 6.4: Precision-Recall Curves - Decision Tree

• Gaussian Näıve Bayes - Figure 6.5 shows the RP curve of the employed Gaussian

Näıve Bayes algorithm on dataset1. The performance of Gaussian Näıve Bayes on

dataset1 is worse than dataset2. Even though the AP score is good, the scores on

class 1 are much worse. For this imbalanced dataset, the score for the class with fewer

samples is very low.

Figure 6.5: Precision-Recall Curves - Gaussian Näıve Bayes
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• k-NN - Figure 6.6 shows the RP curve of the employed Gaussian Näıve Bayes algorithm

on dataset1. One important parameter of the k-NN algorithm is the selection of k.

In this experiment, the model achieved its best accuracy when k was set to be 5.

Figure 6.6: Precision-Recall Curves - k-NN

• SVM - Figure 6.7 shows the RP curve of the employed SVM algorithm on dataset1.

Through experimentation, the model realises a poor performance when the given data

is not normalised. Hence, the dataset is normalised before it is fed into the model and

the parameters are left default for the experiment.

Figure 6.7: Precision-Recall Curves - SVM

• Logistic Regression requires quite large sample sizes, which could be the reason it
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scores lower comparing with the other models. Figure 6.8 shows the RP curve of the

employed Logistic Regression algorithm on dataset1.

Figure 6.8: Precision-Recall Curves - Logistic Regression

6.3.5 Result Comparison on Two Datasets

As the practical usage of the trained model is for digital forensic investigation, more concern

should be put on the classifying of illegal files (class 1). Precisely, the precision, recall and

F1 score on class 1, instead of the average value on class 0 and class 1, should be used to

represents the performance of the models. The scores shown in Table 6.6 are focused on class

1. This table shows an evaluation matrix from two datasets.

As shown in Table 6.6, the performance with dataset2 is significantly better than dataset1.

This is due to the number of “illegal” file samples in dataset2 being more than dataset1.

The imbalanced class problem is apparent in these datasets. The datasets were created in

this manner due to the assumption that only a subset of the “illegal” files is classified as

known illegal/known benign from the centralised database.

The performance of these models indicates that the proposed methodology is valid and jus-

tifies further exploration. Among the aforementioned algorithms, Decision Tree achieved the

best performance. The percentage distribution of the file artefacts among the different classes

can be various in real-world investigations. Different distribution ratios of illegal and benign

files in the dataset should be tested for giving further conclusion which model is more suitable

for specific scenarios.
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Algorithms datsaset1 datsaset2 Short Summary

precision recall f1-

score

precision recall f1-

score

Decision

Trees

0.99 1.00 0.99 1.00 1.00 1.00 Best models in this

experiment

Gaussian

Näıve

Bayes

0.16 0.97 0.27 0.99 1.00 0.99 Performance influ-

enced by the dataset

very much

k-NN 0.79 0.71 0.75 1.00 1.00 1.00 Better performance

on dataset2

SVMs 0.82 0.52 0.64 1.00 1.00 1.00 Better performance

on dataset2

Logistic

Regression

0.71 0.67 0.69 0.99 1.00 0.99 Better performance

on dataset2

Table 6.6: Evaluation Matrix of Different Classification Algorithms and Datasets

6.4 Image File Artefact Classification

In this experiment, a popular pre-trained neural network-based model - ResNet-50 is applied

for image classification in the child abuse case investigative scenario. This section reports the

process of dataset construction and experimental results.

6.4.1 Experimental Data

Figure 6.9: Training Data for Image File Artefact Classification
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The problem is defined as a binary classification task and thus we construct a data set of

images annotated as either “benign” or “illegal”. The images labelled as “illegal” refer to that

those contain children’ faces, while benign ones are pictures gathered from Google Images

and Wikipedia by keywords: selfie, screenshot, receipt, etc. In the end, the dataset comprises

a training set with 600 benign and 675 illegal samples, as outlined in Figure 6.9, and a test

set with 500 benign and 500 illegal samples.

6.4.2 Experimental Setup and Results

In the experiment, the training of ResNet-50 is set up with Pytorch2. The pre-trained

ResNet-50 is fine-tuned with 5 epochs using Adam3 [158] as the optimiser. The training

is performed with a constant learning rate of 0.003 and the parameters of the model are

optimised based on the objective function of cross-entropy loss. The batch size during training

is set to be 32. It is estimated that the whole training process takes 10 minutes to be finished.

Figure 6.10 shows the trend of loss on the training set; Figure 6.11 shows the decrease of loss

on the test set during training. The results show the model is trained with reduced loss as

the training steps increase; namely the ability to distinguish between the benign and illegal

images increases.

Figure 6.10: Training Model on ResNet-50: Loss/Train

2PyTorch is an open-source machine learning library based on the Torch library, used for appli-

cations such as computer vision and natural language processing, primarily developed by Facebook’s

AI Research lab.
3An algorithm for first-order gradient-based optimisation of stochastic objective functions.
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Figure 6.11: Training Model on ResNet-50: Loss/Test

Figure 6.12 presents the evaluation of the test set at different steps of training. It shows the

best checkpoint of the model achieves a 98% accuracy.

Figure 6.12: Training Model on ResNet-50: Accuracy/Test

The model trained in this approach can be integrated with the metadata and timeline event-

based machine learning model. The output of the file data-based model can be used as a

field as input for metadata and timeline event-based model training.
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6.5 File Artefact Relevancy Prioritisation

6.5.1 Experimental Data

As this experimentation requires performance analysis, emulated data is used that has the

following benefits: 1) files with illegal content are not needed, the proposed approach used

the files’ associated digital events to determine if it is suspicious or not; and 2) generated

data has a clearer and more detailed ground truth.

Disk images were generated as virtual machines. Firstly, the emulated actions were con-

ducted to generate the files for investigation. This experiment aims to test the recognition of

similar files through digital events – therefore file metadata and content do not influence the

experiment. Various files, with several file types, are randomly generated and downloaded

onto the VM. Files with various user actions are emulated. General information for these files

is listed in Table 6.7. These files in the VM are labelled as “benign”, mixed with “illegal”

file artefacts.

File Type User Actions Number

pdf creation (download from web) 999

txt creation (notepad) 100

png creation (download from web) 100

py creation, access, run by python 63

Table 6.7: “Benign” File Information

The “pertinent” actions included emulated user activities for each of the three sample case

scenarios; downloading CSEM (downloading research paper on the topic, picture download

and photos sent/received using online chat tools); the execution of a hacking python script

for cracking user’s password; and creating fake invoices for a financial fraud investigation.

The actions defined as pertinent are those surrounding the activities with each scenario. The

files related to these actions are labelled as “pertinent”.

File Type User Actions Number

txt creation, access, edit 6

py creation, unzip, access, move, copy 6

jpg creation, access 13

png creation (download from web), access 4

gif creation (download from web), access 1

pdf creation (download from web) 1

Table 6.8: “Illegal” File Information
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6.5.2 Example Scenarios

To demonstrate the viability of our approach, three sample scenarios are used (and will be

referenced below):

Possession of CSEM Investigation

The suspect uses a computer to access a chat room online related to child sexual exploitation

material (CSEM). Videos and pictures are downloaded to local disk from an installed browser.

A computer belonging to a suspect was sized during a CSEM case investigation. Investigators

use the known hash database filtering out the known illegal files; then a data reduction tool

gets a set of user files that is most common to find pertinent files. These are chat log files,

email files and picture files. With these picture files, some are detected as illegal from a known

hash database. The investigator puts these file into an SVM model for training. In the end,

other unknown files were put into the model, files are sorted by relevancy score for further

analysis.

Hacking Case Investigation

A computer was seized during a hacking case investigation. The suspect uses an email ac-

count. Keyword searching for “username” and “password” identifies several files. These are

text files with content related to the use of password cracking scripts and scripts for hacking

wireless networks. Then investigators choose to put these files into a model to look for other

relevant files.

Financial Fraud Investigation

The suspect creates a phishing site to con victims into supplying their email address and

password and other personal information. The suspect uses their accounts to conduct fraud

online. During an investigation of a financial fraud case, investigators are looking to find out

potentially fraudulent financial instruments, invoices or other financial records. Searching the

keyword “invoice(s)” in pdf and doc files from the raw disk image results in the discovery of

some relevant files. Then investigators use the analysis result to build a model to recognise

similar files.

6.5.3 Case Investigation and Relevancy Prioritisation

This Section presents the results of the experimentation and investigative process conducted

on each of the emulated case scenarios.

For each case, a different set of features are used considering the different investigation focuses.
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The features applied to the model are determined by the detected pertinent files and what

specific similarities/characteristics are sought. The features extracted for building the model

for each case are listed below:

1. For the CSEM case scenario, the investigation focuses on images, videos, etc. The

detected illegal files found have associated digital events from browsing activity. In

addition, several file copying and moving actions for a number of the files were found

in file timelines. For training the model to discover more files with a similar usage

behaviour, the features used are: ‘chrome’, ‘child’, ‘png’, ‘jpg’, and ‘MFT’.

2. In the hacking case scenario, python scripts for user password cracking and a couple of

related text files were found. The python project was unzipped from a compressed file.

Based on these details, the features used are: ‘hack’, ‘python’, ‘py’, ‘txt’, ‘zip’, ‘unzip’.

3. Investigation of the financial fraud scenario found emails that were sent with fake

invoices (files in pdf format). The user had accessed the files close to time last use of

the seized machine. The model building for further exploration uses features: ‘pdf’,

‘invoice’, ‘email’, ‘fraud’, ‘Last Access Time’, ‘Creation Time’.

The known files are used to train a binary-class SVM model. Since the linear SVM algorithm

is applied, the weights can be used as coefficients in a linear discriminant function to calculate

the relevancy score.

Figure 6.13: Relevancy Score Generation in the Experiment

The cases were tested on a dataset with 5.6% of the files labelled as pertinent. Table 6.9

shows that for each model, the recall metric obtained 75% to 89%, when only looking at the

top 10% of the resultant ranked result.

However, illegal files that are not similar to the detected known files can not be detected by

this approach, which leads to the false-negative error. Not similar in this context refers to

both a dissimilarity of the file content itself and the behavioural usage pattern of the file. In

the other words, an illegal file could get a low relevancy score and rank at the bottom of the

list. Therefore, this approach can not be assured to find out all illegal files, but can be used

to guide the investigator’s focused towards sources of pertinent information at the earliest

stage possible in the investigation.
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No. Reviewed Case 1 Case 2 Case 3

10% 0.75 0.82 0.89

20% 0.75 0.82 0.89

30% 0.79 0.82 0.89

50% 0.79 0.82 0.89

100% 1.0 1.0 1.0

Table 6.9: Recall of Each Model

6.6 Summary

Leveraging previously processed digital forensic cases and their component artefact relevancy

classifications can facilitate an opportunity for training automated AI-based evidence pro-

cessing systems. These can significantly aid investigators in the discovery and prioritisation of

evidence. This work presents one approach for file artefact relevancy determination building

on the growing trend towards a centralised, DFaaS paradigm. This approach enables the use

of previously encountered pertinent files to classify newly discovered files in an investigation.

Trained models can aid in the detection of these files during the acquisition stage, i.e., during

their upload to a DFaaS system. The technique generates a relevancy score for file similarity

using each artefact’s filesystem metadata and associated timeline events.

This approach prioritises file artefacts that are similar to previously analysed pertinent files.

The automated process is assisted by developed feature extraction tools and machine learning

models. The results show the advantages of the approach and indicate the promise of an

expedited investigation. As a result, this approach would work best at an early stage in the

examination to focus the investigation in promising directions.

6.6.1 Comparison with the Existing Methodology

Differentiating this approach from previous research on using metadata to cluster the file

artefacts, this research leverages expert human analysis results from the manual processing

of previous investigations. The hypothesis that the features of analysed file artefacts can

enable trained machine learning models to determine how relevant newly encountered file

artefacts are to a specific type of investigation.

One advantage of the proposed method is performing supervised machine learning tasks

on the investigated file artefacts; the automated categorisation can more directly steer the

investigator’s focus towards pertinent data at the earliest possible stage.
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6.6.2 Benefits of this Approach

This approach leverages the suspect device’s “super timeline” that consists of all levels of

digital events, allowing comprehensive automated analysis on disk images. The approach

outlined in this paper has the following potential benefits for digital forensic investigation:

• Automated analysis: Automated device image analysis on suspect devices performed

immediately after acquisition can make full use of the computation infrastructure avail-

able and can help prioritise the expert human investigator’s focus during the analysis

phase.

• Data-driven approach: Many existing tools can only obtain insight specific to a

current case. For example, keyword search and filtering tools are limited to the current

device under investigation and lose the insights learning for future investigations. A

data-driven approach enables the detection of likely pertinent artefacts that are more

difficult to be detected by traditional approaches by leveraging what has been processed

before. Applying existing knowledge to explore new, previously unencountered data

could prove fruitful in expediting the discovery process.

• Better performance as the known database grows: The approach takes advan-

tages of centralised evidence processing and their associated database. The perfor-

mance of this approach can be improved as the centralised dataset of processed cases

gets bigger; a juxtaposition to the current digital forensic volume challenge. This is

due to the bigger the known hash database gets, the higher the chance of detecting

known pertinent file artefacts, the better the predictions can become.

6.6.3 Limitations of this Approach

The objective of this work is to prioritise file artefacts and reduce the time needed for expert

human file artefact examination. However, some limitations of the presented approach are

observed:

• Lack of known pertinent samples as input : Known file artefacts are needed to train

the machine learning models. The performance of the approach highly depends on

the volume of previously analysed and categorised pertinent files. In real-world cases,

multiple options should be implemented for investigators to choose for the different

proportion of illegal files. For example, when detected illegal files are less than 1% of

the benign, the calculation of similarity directly between the files may perform better

than training a classification model.

• False positive and negative errors are possible: Important artefacts could be missed

solely relying on this approach if some artefacts are misclassified. However, as an

evidence prioritisation/triage step, this approach can assist the investigation’s focus.
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It is not intended as a substitution of existing analysis procedures. In fact, both data

reduction discussed in Section 2.7, and triage in Section 2.5, are based on previous

investigation experience. The purpose is to unearth meaningful information at the

earliest time possible.

Consequently, this approach should be used to assist an investigation as a supplementary

technique in conjunction with the existing investigation tools. Manual analysis is still a

necessity before and after using this tool, but it is envisioned that this approach can expedite

the overall processes.
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Chapter 7: Conclusion and Future Work

7.1 Summary of the Work

7.1.1 Deduplicated Digital Evidence Acquisition Sys-

tem

This research explores a novel approach to collect digital evidence from a variety of devices and

evaluates the reduced storage requirements. Improvements speed through several forensically-

sound evidence acquisitions. The factors that influence the performance of the proposed

system were also evaluated. From an analysis of the results, the contribution of the proposed

system is as follows:

• Acquiring data from suspect devices are complete and verifiably accurate;

• Forensically-sound complete disk image reconstruction was achieved for all test data;

• As a beneficial product of the deduplicated acquisition process, preliminary evidence

preprocessing has also taken place including metadata extraction and artefact hashing;

• The performance is better for disk images containing a high proportion of large file.

For complete operating system images, the speed achieved shows great promise for the

proposed technique. In a remote acquisition scenario, i.e., acquiring a forensic image

over the Internet, the effective acquisition throughput speed is faster than the available

broadband upload speed.

The importance of device triage has been discussed as it is a commonplace that multiple

devices are seized during an investigation. Besides, the timeline generated from various

devices contains millions of digital events. The detected pertinent files indicate the forensic

value of the device. Devices with more known illegal file artefacts should be a higher priority

for expert analysis. The detection of file artefact pertinent to the investigation offers an

indication of where to initially focus the investigation.
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7.1.2 Automated File Artefacts Relevancy Analysis

This system can also benefit from integrating evidence prioritisation targeting potentially

pertinent evidence at the earliest stage of acquisition. An automatic approach to use ma-

chine learning models to predict which file artefacts are likely pertinent to an investigation

(i.e. which file artefacts are likely more suspicious than others) was presented. It is designed

to integrate with a DFaaS framework, rather than a stand-alone experiment on an individ-

ual device. The associated toolkit was introduced that was developed for supporting the

automation of some the digital forensic process.

An approach that prioritises file artefacts that are similar to detected/analysed suspicious/rel-

evant files was presented. The approach offers an option for faster detection of file artefacts

likely to be relevant to the investigation. The automated process is assisted by developed

feature extraction tools and machine learning models. The developed tools were tested on

the datasets generated. The results show the advantages of the approach and the promising

result acquired. As a result, it should be used at an early stage in the examination to focus

the investigator. Any bias would be hinged on the bias from the training data. In the real

world application of the system, the training data would be evidence classified by forensic

analysts; tools developed by this approach does not make the decision that files are illegal or

benign.

Example scenarios were outlined and tested, indicating the feasibility and effectiveness of the

proposed methodology. The promising experimental results for suspicious artefact detection

provides motivation for further research.

7.2 Conclusion

The proposed digital evidence processing system leverages data deduplication to combat the

big forensic data challenge. Building upon previous work in the area of data deduplication

for digital forensics, stored evidence classification facilitates automated guidance for investi-

gators in the analysis of new, previously unencountered data. Ultimately, a novel forensically

sound reconstruction technique facilitates verifying the integrity of the deduplicated data

acquisition system in a manner that courts have come to accept. The system eliminates re-

peated data processing, recognises file artefacts pertinent to the investigation and automated

determination of file artefacts are likely to be pertinent to the investigation. The detected

pertinent file artefacts can offer an indication for the rest of the investigation and assist the

device triage.

Evaluation of the proposed methodologies requires various test disk images. The implemented

tool, EviPlant, is used for disk image creation and manipulation. TraceGen is a framework

implemented for automated generation of wear-and-tear on disk device; user action is auto-
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mated emulated on a computer system running in VirtualBox. Test disk images are generated

by TraceGen with emulated investigation scenarios.

Experimentation results presented proves the validity of the proposed methodologies. The

f1-score of pertinent file artefact classification achieves 90% on average in the emulated in-

vestigation scenarios. The illegal file artefacts on the test disk image, assuming unknown

by the system, are ranked at the top 10% for expert analysis. The proposed system can

reduce the amount of data and allow the expert to be focused on interesting devices and

file artefacts. This system can improve the efficiency of digital evidence processing, which is

crucial to alleviate the digital evidence backlogs problem. Digital evidence backlogs can be

alleviated by leveraging the proposed system.

7.3 Future Work

For the experiments in this thesis, the illegal and benign ratio for testing is 1:10. In real case

investigation, the ratio could be less than 1:100. Experiments should be conducted in the

future to find out what the minimum ratio is to allow the proposed ML algorithms work and

what effect various ratios of benign to illegal content will have on the overall performance

and accuracy of the system.

The file timeline generation process extracts digital events associated with file artefact. The

pluralisation of the data processing should be implemented using the MapReduce algorithm

to expiate this process.

The emulated scenarios for testing in this research are file artefacts and user actions on a

disk drive. A real case could involve more evidentiary sources, e.g., IoT and network traffic.

The proposed system and analysed approach should be tested under more complex scenarios

with multiple devices.

TraceGen has shown that a better approach to automated disk image generation is possible

and that it could have significant benefits in the areas of digital forensic teaching, research,

and tool and process validation. At the same time, there is still a long way to go. Generation

of test data, such as computer network traffic, the usage of device data synchronisation, etc.,

is not covered by TraceGen yet. These emulations are necessary for testing of multiple device

analysis approaches.

7.3.1 Multiple Devices Investigation Scenario

When multiple computers and IoT devices are found during an investigation, the detected

illegal file artefacts can guide the subsequent investigation. For example, analysis of the
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network and IoT logs at the time of the file’s creation and last access time. In this case, more

sophisticated emulation is needed.

• Generating more complex scenarios - The experimental scenario used in this thesis

was child abuse material possession and distribution investigation. The purpose of

this case type is to find out files with similar size, directory, creation time, etc. More

investigative scenarios will be designed and evaluated. For example, training models

for determining suspicious files through each origin source (from an email attachment,

cloud accounts, USB devices, etc.), third party owner, etc.

• Cross-device analysis - This can be conducted through analysis on a combined timeline

from multiple devices. Seized devices and evidence sources from the same case or

suspect can be joined together such as combining disk image artefacts with an email

account, cloud service account, file transfer services, etc.

The system detects pertinent file artefact, user actions on this file provide valuable

information. For example, the creation and last access to the file, what other activities

on the device occurred? User’s network activity and IoT devices from combined time-

line could also provide information pertinent to the investigation. A tool for extracting

digital events of a given time interval should be developed for supporting this analysis.

7.3.2 Exploration of Advanced Machine Learning Tech-

niques

For the investigation of more complex cases, advanced machine learning techniques could

improve the performance.

• Feature extraction from file content: Further extension of this approach will integrate

the files’ content as input features. For example, computer vision techniques can be

applied to image and video file analysis; Natural Language Processing techniques can

be applied to document file analysis.

• Further exploration is required on the extent of imbalanced classes influencing each

model’s performance. Form the experiments conducted in this research, it was shown

that the dataset could influence the performance of the models. In future work, more

diverse datasets will be generated for testing. The generation of these datasets should

provide a wide variety of the ratios of the benign/illegal files.

• Exploring appropriate feature selection and feature engineering approach for the de-

fined machine learning tasks. In this thesis, the features are selected by the common

knowledge of the digital forensic investigation. One avenue of exploration that could
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improve the performance is extracting as many features as possible initially, and sub-

sequently selecting from them by using techniques such as SelectBest, RFE (Recursive

Feature Elimination), and PCA (Principal Component Analysis).

• Tuning the model so that it can fit the needs of additional investigative scenarios better.

For example, to focus on the recall scores, rather than insisting on a higher precision.

Because, in any digital forensic investigation, any pertinent inculpatory or exculpatory

file artefact must not be inadvertently overlooked.

122



Bibliography

[1] Xiaodong Lin. Examining NTFS File System. In Introductory Computer Forensics,

pages 163–197. Springer, 2018.

[2] Xiaoyu Du, Christopher Hargreaves, John Sheppard, and Mark Scanlon. TraceGen:

User Activity Emulation for Digital Forensic Test Image Generation. Forensic Science

International: Digital Investigation, 03 2021.

[3] Mark Scanlon, Xiaoyu Du, and David Lillis. EviPlant: An Efficient Digital Forensic

Challenge Creation, Manipulation and Distribution Solution. Digital Investigation,

20:S29–S36, 2017.

[4] Xiaoyu Du, Chris Hargreaves, John Sheppard, Felix Anda, Asanka Sayakkara,

Nhien-An Le-Khac, and Mark Scanlon. SoK: Exploring the State of the Art and the

Future Potential of Artificial Intelligence in Digital Forensic Investigation. In

Proceedings of the 15th International Conference on Availability, Reliability and

Security, pages 1–10, 2020.

[5] Xiaoyu Du, Quan Le, and Mark Scanlon. Automated Artefact Relevancy

Determination from Artefact Metadata and Associated Timeline Events. In The 6th

IEEE International Conference on Cyber Security and Protection of Digital Services

(Cyber Security). IEEE, 06 2020.

[6] Xiaoyu Du and Mark Scanlon. Methodology for the Automated Metadata-Based

Classification of Incriminating Digital Forensic Artefacts. In Proceedings of the 14th

International Conference on Availability, Reliability and Security, page 43. ACM,

2019.

[7] Xiaoyu Du, Paul Ledwith, and Mark Scanlon. Deduplicated disk image evidence

acquisition and forensically-sound reconstruction. In 2018 17th IEEE International

Conference On Trust, Security And Privacy In Computing And Communications/12th

IEEE International Conference On Big Data Science And Engineering

(TrustCom/BigDataSE), pages 1674–1679. IEEE, 2018.

[8] Xiaoyu Du, Nhien-An Le-Khac, and Mark Scanlon. Evaluation of Digital Forensic

Process Models with Respect to Digital Forensics as a Service. In Proceedings of the

16th European Conference on Cyber Warfare and Security (ECCWS 2017), pages

573–581, Dublin, Ireland, 06 2017. ACPI.

[9] Francesco Servida and Eoghan Casey. IoT Forensic Challenges and Opportunities for

Digital Traces. Digital Investigation, 28:S22–S29, 2019.

123



[10] Shams Zawoad and Ragib Hasan. Digital Forensics in the Age of Big Data:

Challenges, Approaches, and Opportunities. In 2015 IEEE 17th International

Conference on High Performance Computing and Communications, 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th

International Conference on Embedded Software and Systems, pages 1320–1325.

IEEE, 2015.

[11] Simson L Garfinkel. Digital Forensics Research: The Next 10 Years. digital

investigation, 7:S64–S73, 2010.

[12] David Lillis, Brett Becker, Tadhg O’Sullivan, and Mark Scanlon. Current Challenges

and Future Research Areas for Digital Forensic Investigation. In The 11th ADFSL

Conference on Digital Forensics, Security and Law (CDFSL 2016), pages 9–20.

ADFSL, 2016.

[13] Oluwasola Mary Adedayo. Big Data and Digital Forensics. In 2016 IEEE

International Conference on Cybercrime and Computer Forensic (ICCCF), pages 1–7.

IEEE, 2016.

[14] Eoghan Casey, Monique Ferraro, and Lam Nguyen. Investigation Delayed Is Justice

Denied: Proposals for Expediting Forensic Examinations of Digital Evidence. Journal

of forensic sciences, 54(6):1353–1364, 2009.

[15] Luca Caviglione, Steffen Wendzel, and Wojciech Mazurczyk. The Future of Digital

Forensics: Challenges and the Road Ahead. IEEE Security & Privacy, 15(6):12–17,

2017.

[16] Reza Montasari, Richard Hill, Simon Parkinson, Pekka Peltola, Amin Hosseinian-Far,

and Alireza Daneshkhah. Digital Forensics: Challenges and Opportunities for Future

Studies. International Journal of Organizational and Collective Intelligence (IJOCI),

10(2):37–53, 2020.

[17] Michael M Losavio, KP Chow, Andras Koltay, and Joshua James. The Internet of

Things and the Smart City: Legal Challenges with Digital Forensics, Privacy, and

Security. Security and Privacy, 1(3):e23, 2018.

[18] Alessandro Guarino. Digital Forensics as a Big Data Challenge. In ISSE 2013

securing electronic business processes, pages 197–203. Springer, 2013.

[19] Amin Azmoodeh, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Big Data and

Internet of Things Security and Forensics: Challenges and Opportunities. In

Handbook of Big Data and IoT Security, pages 1–4. Springer, 2019.

[20] Stavros Simou, Christos Kalloniatis, Stefanos Gritzalis, and Vasilios Katos. A

Framework for Designing Cloud Forensic-enabled Services (CFeS). Requirements

Engineering, 24(3):403–430, 2019.

124



[21] Jooyoung Lee and Sungyong Un. Digital Forensics as a Service: A Case Study of

Forensic Indexed Search. In ICT Convergence (ICTC), 2012 International Conference

on, pages 499–503. IEEE, 2012.

[22] Giuseppe Totaro, Massimo Bernaschi, Giancarlo Carbone, Marco Cianfriglia, and

Antonio Di Marco. ISODAC: A High Performance Solution for Indexing and

Searching Heterogeneous Data. Journal of Systems and Software, 118:115–133, 2016.

[23] Paul Joseph and Jasmine Norman. Forensic Corpus Data Reduction Techniques for

Faster Analysis by Eliminating Tedious Files. Information Security Journal: A Global

Perspective, 28(4-5):136–147, 2019.

[24] Darren Quick and Kim-Kwang Raymond Choo. Big Forensic Data Reduction: Digital

Forensic Images and Electronic Evidence. Cluster Computing, 19(2):723–740, 2016.

[25] Rodney McKemmish. When is Digital Evidence Forensically Sound? In IFIP

international conference on digital forensics, pages 3–15. Springer, 2008.

[26] Quang Do, Ben Martini, and Kim-Kwang Raymond Choo. A Forensically Sound

Adversary Model for Mobile Devices. PloS one, 10(9):e0138449, 2015.

[27] Nurul Hidayah Ab Rahman, William Bradley Glisson, Yanjiang Yang, and

Kim-Kwang Raymond Choo. Forensic-by-design Framework for Cyber-physical Cloud

Systems. IEEE Cloud Computing, 3(1):50–59, 2016.

[28] Carolyn M Burns, Jeff Morley, Richard Bradshaw, and José Domene. The Emotional
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