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Abstract. The persistence of the single password as a method of au-
thentication has driven both the efforts of system administrators to
nudge users to choose stronger, safer passwords and elevated the sophis-
tication of the password cracking methods chosen by their adversaries. In
this constantly moving landscape, the use of wordlists to create smarter
password cracking candidates begs the question of whether there is a
way to assess which is better. In this paper, we present a novel mod-
ular framework to measure the quality of input wordlists according to
several interconnecting metrics. Furthermore, we have conducted a pre-
liminary analysis where we assess different input wordlists to showcase
the framework’s evaluation process.

Keywords: Password Cracking · Wordlist · Dictionary · Contextual In-
formation

1 Introduction

Despite known security concerns, passwords still remain the most widely used
and one of the easiest and most adopted methods of authentication. As password
policies become more restrictive by enforcing the selection of stronger passwords,
attacks also become more refined and sophisticated. Traditional password crack-
ing methods have, in many cases, become less efficient due to the increase of the
computational cost of the underlying algorithms and the strengthening of the
passwords [3]. Salting the passwords3 also drastically increases the complexity
of the password cracking process when targeting several passwords as each salt
must be consider independently.

In the case where a single password is considered, if the attacker is aware of
information regarding the target, that information can be leveraged aiming at

3 The salt is a random string (typically 3 to 5 random characters) that is concatenated
to the password before hashing it. Identical passwords therefore have a different hash.
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cracking the password in fewer attempts. An example of this type of situation
would be a law enforcement officer wanting to access a password protected digital
device of a suspect during the course of an investigation. In this case, time is
of the essence in order to swiftly resolve the investigation or prevent further
criminal acts.

Another particular case is when the targeted dataset can be associated to a
particular context. An example would be a penetration testing campaign evalu-
ating the strength of the passwords used by the user of a system. If such system
is linked to a particular community - for example users of a video game ser-
vice - the operator can use contextual information such as typical language used
in this community, references from the topic, or any other type of contextual
information to refine the password cracking process.

All the above information can be useful, to try to make more educated guesses
about the password of a target or a community [10]. The ultimate goal is to
recover the password faster than we would with current state-of-the-art ap-
proaches, by giving them a head start regarding the wordlist they use during
the password cracking process. By creating a custom wordlist, that is tailored
to the target and by checking first password candidates that are more likely to
be chosen as the password by the target, we can have a more efficient password
recovery process.

In this article, we have designed a modular framework to assess the qual-
ity of a wordlist to be used in password cracking processes. We have proposed
several criteria that can be considered for such evaluation and explained why
there cannot be a single and totally ordered metric to evaluate the wordlist. Our
methodology relies on the Password Guessing Framework (PGF)4, initially de-
signed to evaluate and compare password guessing tools, that we have adapted
and complemented for the need of this study. We are then discussing how this
framework can and will be used to evaluate and improve wordlist generation
processes depending on the conditions of particular scenarios.

2 Background and Related Work

2.1 Password Cracking Techniques

There is a vast array of password cracking techniques, that are used depending
the situation, from the traditional, like an exhaustive search, to the recently
developed, like machine and deep learning techniques, such as the ones based
on Generative Adversarial Networks (GANs) [7]. A common approach is the
dictionary attack in combination with mangling rules, which are grammar and
slang substitutions and modifications that aim to imitate human tendencies dur-
ing password selection. For example, using the number 3 instead of the letter e,
adding a ! at the end of the password, capitalising the first letter, etc. It is impor-
tant to note that mangling rules widen the set of guesses significantly, because
each new alteration has to be checked with all the password candidates. This is

4 https://www.password-guessing.org/
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why a balance has to be achieved between the number of mangling rules that
we want to test and the time we can afford for the recovery process. There are
common mangling rules that are used by the community such as the Hashcat5

Best64 rules.
Other common password cracking methods include rainbow tables [15], which

are based on the idea of a time-memory trade-off where the hashes of plaintext
passwords are pre-computed and stored for faster lookup. A common counter-
measure to rainbow tables is the use of a salt, which is a random value concate-
nated to the plaintext password before it is hashed, rendering rainbow tables
unpractical in all scenarios where salt is used.

There are many different password cracking algorithms, some of which have
been around for years, like John the Ripper6 and hashcat7, and some which
have emerged lately such as PassGan [7] which uses a Generative Adversarial
Network (GAN) to learn password rules directly from leaked password lists, or
the neural network based solution from Melicher et al. [14]. Along with those
already mentioned, several other tools have been proposed and we cite few of
them in what follows. OMEN [4] is using a Markov model to generate candidates
in a decreasing order of probabilities. PCFG [25] which stands for Probabilistic
Context-Free grammar, where the input dictionary is used to create a context-
free grammar and assign probabilities to it. PRINCE8 creates intelligent chains
to all combinations of words from the input wordlist.

2.2 Analysis of Password Trends

Something else that has changed in recent years is that information about pre-
vious passwords is easily available on the internet. Every day we hear of new
data breaches that expose passwords (plaintext or hashed) and sometimes ac-
companying information, such as emails, names, addresses, etc. For an attacker
wanting to access a specific account belonging to an individual, the password
cracking attack could be reduced to a simple lookup for a match in leaked lists.
In fact, studies of password habits of users have shown that users tend to reuse
passwords that they need to enter frequently [24] and they tend to underestimate
the consequences of doing so.

Furthermore, even when passwords are not reused explicitly, there are pass-
word ties between older and newer passwords of the same user [19]. But, even
in the good case where that particular user does not reuse the same password
across different services, knowing their previous passwords or other information
about them, can give great insight to the cracking process [9]. To this end, Tar-
Guess, a framework that makes use of Personally Identifiable Information (PII)
and cross-site information, has been proposed to make targeted guesses of users’
passwords and it was shown to outperform current models for both the cases of
non-savvy and security-savvy internet users. [23].

5 https://hashcat.net/
6 https://www.openwall.com/john/
7 https://www.hashcat.net
8 https://github.com/hashcat/princeprocessor
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But even if previous passwords of a user are not known, a case can be made
that knowledge of passwords of other users can speedup the process [11]. In fact,
studies have shown that there are common misconceptions people fall prey to
when creating their password, such as thinking that by adding a symbol at the
end of the password they make it more secure [18], [6].

The password policy in place plays a role at the strength and guessability of
a password. It has been shown that putting a password policy in place forces
users to have more secure passwords, whereas users left to their own devices will
generally choose weaker passwords [13]. But the stronger passwords required
by password policies may lead users to either having trouble remembering and
ending up writing down their passwords [12] or to use common techniques for
bypassing the requirements without building a strong password [16]. For exam-
ple, Password1! fulfils the requirement for uppercase, lowercase, symbols and
numbers and is above eight characters, but would not be considered a strong
password.

2.3 Password Strength Meter

Password strength meter is another field of study that is continuously evolv-
ing following the sophistication of password cracking attacks. The most basic
strength meter is a simple 0/1 metric where basic rules must be respected by
the password to accept it, and reject it otherwise, like the LUDS-8 from the
NIST proposal back in 2004 [1]. There are nowadays several proposals relying
on different approaches often aiming at giving a score instead of a yes/no. One of
the most well-known meters is “zxcvbn” [26] in use in the Dropbox service and
probably in many others as it is an open-source solution. Some meters rely on
cracking techniques to assess the probability the password would be produced
by such techniques, such as the OMEN-based solution [2] or the PCFG-based
one [8, 20]. Some meters are machine-learning based such as the neural network
based meter of Melicher et al. [14] extended by Ur et al. [17], or the multi-modal
approach of Galbally et al. [5]. While increasing the security of digital services
by enforcing users to select strong and safe passwords, those meters also play a
role in the analysis of password datasets to better understand human tendencies
but also classifying passwords in classes of strength.

3 How Can Quality Be Measured?

The definition of a metric to measure and classify the quality of wordlist given
as input to password cracking process is a difficult one. The expected features
a wordlist should have, and be evaluated on, is likely to vary depending on the
final cracking process and its context. The particular scenario of the attack,
such as whether it is a targeted attack to a specific individual or a fishing at-
tack that targets a group of people plays a role in the approach we take for
creating a wordlist. Other factors, such as the language of the target(s), the
type of service, etc, also have to be taken into account, since the approach will
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be different [22].Therefore, creating a single metric for measuring the quality
of dictionaries is not suggested. Instead, we are looking at a number of factors
that can be taken into account, alone or combined, when deciding the type and
makeup of a wordlist that is likely to make it the optimal candidate for a specific
scenario. These factors are presented below.

3.1 Final Percentage of Passwords Cracked

This is the most straight-forward metric in password cracking, where a wordlist
is evaluated based on the amount of passwords it has cracked from a target list.
This metric is typically the most important one especially in the case where
the concern is the volume of cracked passwords and the focus is not on a single
target or a small number of targets.

Some password cracking processes have a fixed limit of candidates they can
generate based on the size of the input wordlist. For example, a straight dic-
tionary attack will generate as many candidates as there are in the wordlist,
potentially multiplied by the number of mangling rules, if they are used. Some
other processes can be considered as endless, such as for example Markov-based
ones if they are not limited, and will continuously produce candidates like an
unbounded exhaustive search would do. As a consequence, those endless pro-
cesses would theoretically always retrieve 100% of the passwords if they are
given enough time which in most cases is not practical. That is why it is nec-
essary to set a limit to the number of candidates that a process is allowed to
generate and test. Such limit can be adjusted depending on the complexity of
the scenario we want to assess.

3.2 Number of Guesses until Target

The previous metric alone is not enough to evaluate a wordlist as other factors
can be relevant in some scenarios. For example, one wordlist may recover 75%
of passwords while a second may get only 60%. But, it might be the case that
the second one reached a score of 50% with less candidates generated than the
first one. In some scenarios, the number of candidates that can be evaluated in
a reasonable time is strongly limited because of hardware constraints or high
complexity of the underlying function making the second wordlist more interest-
ing for a particular scenario. Assessing the number of guesses needed to reach
a targeted percentage of retrieved passwords can help to select a wordlist more
suited to the conditions of some scenarios.

3.3 Progress over Time

Another metric that is strongly related to the amount of found passwords, is
the pace in which the passwords are retrieved. During password cracking, an
updated percentage of results at pre-established checkpoints, can give us insights
into the performance of the dictionary over time. For example, at some point in
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the cracking progress, the amount of new passwords guessed at every checkpoint
might start decreasing, which means that the new password candidates that are
checked do not recover new passwords anymore. This is often another criterion
to stop the process and also a hint, for dictionary lists that are ordered by
count, that the size of the input wordlist can be decreased without a remarkable
effect on performance. This criterion is the second derivative of the curve of
found passwords over number of guesses and represents a process with an upper
bound, compared to the metric outlined in Section 3.1.

3.4 Size of Wordlist

Closely related to the stop criterion of incremental progress over time, the size of
the wordlist is another metric that can be taken into account. For example,when
two wordlists, with a significant difference in size, produce similar numbers of
cracked passwords, the smaller wordlist can be thought of as of better quality, as
it needs less information to achieve the same results. From another point of view,
when the foreseen process is machine learning based, a larger wordlist could be
preferred to reinforce the training phase.

3.5 Better Performance with Stronger Passwords

Another metric that should be considered is the performance of a wordlist against
difficult passwords. For example, if two wordlists are similar in the previous
criteria, i.e. crack about the same number of passwords, do it at about the same
amount of time and are of similar size, the one that cracks more difficult to
recover passwords is stronger, and should be assigned a higher score. Often, in
real world scenarios and if the hash function permits it, an exhaustive search
is performed first for the weaker passwords. This means that a wordlist that
performs well against passwords that cannot be recovered by a brute force attack,
is more valuable.

3.6 Compound Metric

The above metrics, cannot accurately assess any individual wordlist. Focus on
one, or more of the above is necessary, according to the target case. For example,
when we are concerned with recovering as many passwords as possible, the per-
centage of success is what matters most. But, when we want the largest number
of passwords in a specified amount of time, the trade off between success and
time is important. When we focus on a single target, or a small number of targets,
like during the course of an investigation, speed and possibly the performance
against stronger passwords are important factors to consider. This criterion can
be refined to look at the number of guesses needed to retrieve a given percentage
of passwords of a certain strength class as defined later in Section 5.

Furthermore, it has been shown that large corpora of passwords obey Zipf’s
Law, meaning that the frequency of each popular password, would be inversely
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proportional to each rank, i.e. the second most popular password would appear
approximately half as many times as the first [21]. According to this analysis,
the level of fit of a particular dataset under this model, could be an indicator of
strength of the dataset.

This brings forward the need for a compound metric, one that combines two
or more of the above criteria, to get an evaluation tailored to a specific case.

4 Methodology

Fig. 1. Methodology

Based on the metrics analysed in Section 3, the evaluation of input wordlists,
with the purpose of arriving at the optimal one, is a case by case scenario and
is based on the individual needs, be it rate of success, time it takes to achieve a
certain threshold or success at recovering one specific strong password.

Furthermore, the success of the input wordlist is not only based on the above
factors, but also on the tools we use to do the password cracking. For example,
PCFG works better and estimates more accurate probabilities when the input
dictionary does not contain only unique entries, but repeated ones. However,
such dataset with repetitions are rarely available to the research community.
Therefore, in order to test wordlists, it is essential to have a few different tools
to evaluate them with.

For this purpose, we have chosen to use four tools; John the Ripper, Omen,
PCFG and Prince. The aim of this is not to compare these tools and find which
is the better one, rather to make sure we have compared input dictionaries as
thoroughly as possible. In order to perform this part of the process, we are using
the Password Guessing Framework (PGF). This tool is an open source tool
to automate the process of comparing different password guessers. As already
mentioned, the reason we are using this tool is not to compare password guessers,
rather to avail of its ability to automatise the setting up of the cracking process.
Indeed, PGF allows the setting up of ’jobs’ which will be processed sequentially,
where you can define the parameters of the guessing tool, input dictionary, target
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list (hashed or plain), max number of guesses, etc. The results come in the
form of *.txt and *.csv files containing an analysis of the number of found
passwords, a list of those as well as data on cracking performance over time. All
this information is then used by us for the evaluation of the input dictionaries.

As the methodology flowchart on Figure 1 shows, the performance of the dif-
ferent input dictionaries is evaluated and presented or fed back to pre-processing.
The pre-processing step, which is outside the scope of this paper and part of our
future work, contains the creation of tailored input lists from existing or custom
dictionaries, the tailoring of mangling rules to the specific scenario (keeping in
mind whether the end goal is success ratio, time efficiency, recovery of a tar-
geted password, etc). The feedback from the evaluation process will re-trigger
the wordlist creation process in order to modify the size of the list, the number
and quality of mangling rules and the level of contextual information, with the
end goal being to optimise the generation of a password candidate list.

The goal of this framework will be the evaluation of all created password
candidate lists under the same scenarios and by taking into account the metrics
discussed in Section 3, to arrive at the optimal wordlist for each scenario. In the
next section, we present a preliminary analysis into how the evaluation process
of the framework works, what results we can get and their significance.

In this preliminary experiment, the main focus is assessing password candi-
dates that stem from leaked databases, to see whether a wordlist that is themat-
ically similar to the list of passwords we want to crack can yield better results
than a generic wordlist.

5 Preliminary Analysis

5.1 Dataset selection and creation

The datasets we used to conduct a preliminary experiment to gauge the role
of context in password selection, can be summed up in Table 1. The dataset
we have named Comb4 is a combination of four different leaked datasets from
four categories, music, cars, videogames and manga. Our aim was to create
a combination of datasets from different sources to cover a wide spectrum of
user interests and ascertain whether the purpose of the forum for which the
password is created for, plays a role during the creation process. Because of
availability, the evaluation datasets are from only two of the above categories,
manga and videogames. We have also used RockYou as a baseline to compare the
other datasets with. The version of RockYou we used is the one with 14 million
unique passwords but the full version of 32 million passwords was also tested
with PCFG, but yielded to slightly better but similar results. All the datasets
used in this experiment stem from an online database of leaked wordlists named
hashes.org, the use of which has been reviewed and approved by the Office of
Research Ethics of University College Dublin.
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Table 1. Datasets in use

Dataset Size

Comb4

axemusic 252,752
jeepforum 239.347
minecraft 143,248

mangatraders 618,237

Evaluation
boostbot 143,578
mangafox 437,531
RockYou 14,344,391

5.2 Example Use Case

In this example use case, the evaluation datasets, Boostbot and Mangafox, as
well as RockYou are used without modification with all four password crackers
and 10 billion candidates were generated and evaluated for each process. The
results of the cracking progress over time for RockYou, Mangafox and Boostbot
can be found in Figures 2, 3 and 4 respectively. As can be seen on all three
figures, PCFG performs better for all three datasets and especially in the case
of RockYou the result is much more distinguished. Comb4 contains 1,253,531

passwords, of which 1,096,481 are unique. Of these, RockYou PCFG managed
to crack more than 60% (768,341) or in case of unique passwords 617,016. This
result is significantly more than the other three guessers, but also significantly
more than Mangafox and Boostbot. In fact, RockYou performed better than
both of those datasets with all four guessers.

Fig. 2. Cracking Progress over time with RockYou

This result is not a surprise because the first key difference between RockYou
and Mangafox and Boostbot is their size, as seen in Table 1. RockYou is about
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Fig. 3. Cracking Progress over time with Mangafox

Fig. 4. Cracking Progress over time with Boostbot

32 times larger than Mangafox and 100 times larger than Boostbot. This means
that there is certainly more diversity in the password candidates generated with
rockyou. If then we focus only on Mangafox and Boostbot, Mangafox performed
slightly better, which can be on account of its larger size but also on the fact
that the largest dataset in Comb4 is Mangatraders, which is also another manga
related leak.

Furthermore, we can see that Prince under performed with the smaller datasets,
while it had the second best performance with RockYou. This is due to the
principle of PRINCE combining entries of the input dictionary to create new
candidates. The input in the two smaller dataset are more sophisticated than
those in Rockyou. There, their concatenation leads to very complex candidates
with a low probability of being in the targeted list. A pre-processing could be
apply in PRINCE to better integrate such type of input wordlist.

JtR on the other hand, steadily improved throughout the cracking process,
almost reaching PCFG towards the end for both Mangafox and Boostbot.
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Table 2. Strength Distribution in Comb4

Comb 4 Axemusic Jeepforum Mangatraders Minecraft

Class 0 46,645 4,143 34,832 6,471 1,199
Class 1 503,809 93,100 128,279 241,745 40,685
Class 2 395,202 87,158 58,189 205,218 44,637
Class 3 226,243 55,395 16,657 118,840 35,351
Class 4 81,624 12,898 1,388 45,962 21,376

Fig. 5. Strength of cracked passwords with RockYou

Because the amount of cracked passwords, as mentioned in Section 3 cannot
be the only metric to take into account - otherwise RockYou would have been
the clear winner - we also looked at the strength classes of the cracked passwords
by each dataset.

In order to evaluate that, we used zxcvbn, as referenced in Section 2. With
zxcvbn passwords are divided into 5 classes, according to their strength, i.e. how
well they would withstand a cracking attack, with class 0 being the least secure
and class 4 being the most secure. This classification takes into account rules
set by common password policies but also l33t speak, common passwords and
patterns to make a determination. Table 2 shows the classification of Comb4 in
these classes and Figures 5, 6 and 7 show the cracked passwords per class for
RockYou, Mangafox and Boostbot respectively, with all four password guessers.

As can be seen by the above figures for all three datasets, the distribution of
found passwords follows the distribution amongst classes of the Comb4 dataset
which can be seen in Table 2. For RockYou, we can see that PCFG as expected
performed better on all classes (except class 0, where all four are on par) with
an especially big difference for class 3 and 4 compared to the other guessers.
When it comes to Mangafox, other than Prince, the performance was similar for
the three other guessers. Interestingly, Mangafox and Boostbot were able to find
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about one third as many passwords in class 4 as RockYou with PCFG, especially
considering the big difference in size. Even more remarkably, MangaFox and
Boostbot outperformed RockYou in case of class 4 with both JtR and Omen.

Fig. 6. Strength of cracked passwords withmangafox

Fig. 7. Strength of cracked passwords withboostbot

Oftentimes, in real world scenarios, the way to go would not be to choose one
password cracking guesser or input wordlist over the other but stack them. For
this reason we wanted to see how using a big input dataset like RockYou could be
complemented, rather than beat. Table 3 shows the number of unique passwords
that were found only by Mangafox and Boostbot and not by RockYou, in total
and also their distribution amongst the 5 classes of zxcvbn.
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Table 3. Passwords found by Boostbot and Mangafox but not by RockYou

JtR Omen Prince PCFG

All
Boostbot 26,109 32,911 5,788 17,811
Mangafox 26,694 37,977 3,608 22,121

Class 0
Boostbot 182 265 22 73
Mangafox 210 227 35 109

Class 1
Boostbot 11,960 16,698 3,095 3,659
Mangafox 12,005 14,603 1,664 5,393

Class 2
Boostbot 10,439 11,628 1,730 8,303
Mangafox 12,192 16,702 1,476 11,303

Class 3
Boostbot 3,512 4,171 796 5,266
Mangafox 2,285 6,325 373 4,868

Class 4
Boostbot 16 149 145 510
Mangafox 2 120 60 448

As can be seen in Table 3, this is a substantial addition of found passwords.
In fact, with PCFG, the addition of either the passwords recovered by Mangafox
or Boostbot, brings a 14% increase to the total, which is an important addition,
being that this is the class of passwords that is the least easy to recover. Even in
the case of Prince that generally underperformed, 73% for Mangafox and 63%
for Boostbot, of the passwords that were found with these two datasets, were
not recovered by RockYou. The recovery of class 4 passwords with Omen was
even more impressive because about twice as many passwords were recovered
with Mangafox or Boostbot compared to RockYou. Finally, even in the case of
JtR, with a meagre 2 passwords recovered from Mangafox and 16 from Boostbot,
RockYou did not manage to find any of class 4.

5.3 Breakdown of Comb4

In order to assess the quality of the input wordlists even further, we decided to
break down Comb4 into the four individual datasets it was generated from, axe-
music, jeepforum, mangatraders and minecraft. The breakdown of these datasets
to zxcvbn classes is shown in Table 2. Additionally, Table 4 shows the amount
of passwords found of each dataset of Comb4, by each input wordlist for all
four password guessers. The result that pops up is that in the case of Minecraft,
and excluding the underperforming Prince, the amount of passwords found by
RockYou, Mangafox and Boostbot are very similar. A possible explanation of
these results is that the thematic proximity compensates for the difference in
size. In fact, Boostbot is the smallest dataset (about 100 smaller than RockYou)
but thematically is the one closest to Minecraft. And Mangatraders is still a lot
more relevant to Minecraft than for example Jeepforum.

Still, we see that for the other three datasets, RockYou performs a lot bet-
ter than Mangafox and Boostbot. Even in the case of Mangatraders, while the
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Table 4. Breakdown of Comb4

JtR Omen Prince PCFG

Axemusic
RockYou 60,583 86,417 88,776 131,485
Mangafox 57,923 67,934 6,456 93,843
Boostbot 57,120 63,969 8,027 86,090

Jeepforum
RockYou 96,894 105,232 109,847 133,665
Mangafox 93,250 74,535 7,461 92,265
Boostbot 89,084 72,753 6,966 83,477

Mangatraders
RockYou 267,553 289,903 299,890 373,483
Mangafox 260,126 234,834 18,067 255,964
Boostbot 252,338 221,328 22,121 241,774

Minecraft
RockYou 39,050 42,630 36,335 55,226
Mangafox 41,417 43,171 3,561 50,221
Boostbot 40,624 39,345 5,741 43,953

results for JtR and Omen are close, RockYou’s performance for PCFG is sig-
nificantly better, since for PCFG the full RockYou list of 32 millions was used,
so that PCFG can take advantage of repetitions of passwords to form better
probabilities.

In this case, the size of the input wordlist makes the difference and this along
with percentage of success is the one to watch. Still, as mentioned above, in real
cases the goal is not to choose one wordlist over the other but to complement it.
For this reason, we are looking again at another metric, performance for stronger
passwords. In Table 5 we are looking at PCFG only, and focusing on the class
3 and class 4 passwords that were recovered by only Mangafox and Boostbot
and not by RockYou. As can be seen, the percentage of passwords found by
these two datasets and not RockYou was significantly higher for minecraft and
mangatraders, the two datasets that were contextually closer to mangafox and
boostbot.

Table 5. Breakdown by dataset for PCFG, Class 3 and Class 4

Mangafox Boostbot
PCFG Class 3 Class 4 Class 3 Class 4

axemusic 1.3% 0.4% 1.6% 0.5%
jeepforum 0.9% 0.6% 0.9% 0.4%

mangatraders 2.2% 0.7% 2.7% 0.9%
minecraft 4.1% 0.3% 3.4% 0.2%
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6 Discussion

The question that arises from the preliminary results is, what do these two
datasets have that RockYou does not? Both Mangafox and Boostbot stem from
online leaks and there is no processing, augmentation or other customisation
done to them. Furthermore, their size is small compared to the 14 million of
RockYou passwords (32 million in the case of PCFG). The one advantage these
datasets have, is that thematically they are closer to the target datasets.

Overall, the performances between the three wordlist are comparable when
considering the JtR approach and close when considering with Omen, both of
which are Markov based models. The results are really poor when it comes to
Prince (for Mangafox and Boostbot) but a pre-processing on the wordlist to
make a better usage of it could modify those results. PCFG works better than
the other processes but with a clear advantage for RockYou. This is probably
thanks to the difference of size, giving more chance to PCFG to infer and reuse
the grammar. One way to possibly improve the results of PCFG with Mangafox
and Boostbot could be to reuse the grammar trained from RockYou but feeding
the special list with the content of the other dataset.

Both Mangafox and Boostbot have a better ratio of passwords found in Class
3 for Minecraft and in a less impressive manner on Class 4 for Mangatraders. The
found passwords are significantly fewer for Axemusic and Jeepforum, probably
due to a lesser proximity of the communities. Surprisingly, Mangafox performs
better than Bootsbot on Minecraft and Boostbot better on Mangatraders than
Mangafox, while we would have expect the results to be the other way around.
Still, the communities of manga and videogames are more closely associated with
each other than music and cars, so this close proximity might be the explanation.
Finally, while Mangafox performs poorly on Class 3 of Jeepforum, it performs
relatively well, even if the numbers are small, on Class 4.

7 Conclusion and Future Work

The developed framework provides a new methodology to assess and compare
wordlists. It highlights that wordlists behave differently depending of the context
of the target dataset and it can therefore be used to develop and assess wordlist
generation processes in several scenarios. Focusing on the different classes of
strength is also useful to evaluate the quality of wordlists to retrieve stronger
passwords.

Our analysis highlighted also that the size and the composition of the wordlists
have a strong impact on some processes, for example Prince and PCFG, while
it is less visible for some other processes. Dedicated pre-processing shall be en-
visaged to better prepare the wordlists for those processes.

Therefore, it is clear that not one metric can stand alone, evaluate a wordlist
thoroughly and assign a score that can predict how well that wordlist will do
against a target. As was the case in this preliminary analysis, a compound metric
will be needed for the evaluation, and even then, there should be room left for
its parameterisation for each attack scenario.
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Our future work will be twofold. On one hand it will focus on the design of a
process to generate targeted wordlists which will be tailored to specific scenarios,
with the aim to achieve better results for some targeted community or classes
of strength. This process will involve the customisation of the wordlist based on
contextual information known about the target, as well as by a constant feedback
process with which the levels of contextualisation, the choice of mangling rules
and the size of the input wordlist, will be optimised. Secondly, through the
process mentioned above, further work will be conducted to assess and combine
the metrics presented in this paper, and optimise them for the evaluation of
wordlists.
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