
May 13, 2021 15:32 ws-rv9x6 Book Title main page 1

Chapter 1

On Offloading Network Forensic Analytics to

Programmable Data Plane Switches

Kurt Friday

The Cyber Center For Security and Analytics

The University of Texas at San Antonio, USA

Elias Bou-Harb

The Cyber Center For Security and Analytics

The University of Texas at San Antonio, USA

Jorge Crichigno

Integrated Information Technology

The University of South Carolina, USA

Mark Scanlon

Computer Science and Informatics

University College Dublin, Ireland

Nicole Beebe

The Cyber Center For Security and Analytics

The University of Texas at San Antonio, USA

The extent to which cyber crimes are now being executed has reached
a frequency that has never been observed before. To detect these events
and extract relevant network artifacts for investigations, network foren-
sics has long been the de-facto approach. However, the time and data
storage necessary to perform traditional forensic procedures has put in-
vestigators at odds, often resulting in substantial artifact extraction la-
tency and poor incident response. To mitigate what have now become
inherent pitfalls for the forensics community, we propose a novel means
of transforming network forensics to a procedure that functions at line
rate, while the event of interest is taking place, by harnessing the new-
found programmable switch technology.

1

May 13, 2021 15:32 ws-rv9x6 Book Title main page 2

Amid the prevailing cyber-crime themes dominating today’s head-
lines are Distributed Denial of Service (DDoS) activities and the mis-
use of Internet of Things (IoT) devices. To this end, we implement
two switch-based use cases for conducting the relevant network forensics
associated with each of these classes of misdemeanors, respectively. In
particular, the first use case employs dynamic thresholds generated from
real-time artifact statistics extracted by the switch to infer contempo-
rary DDoS attacks. The empirical results confirm that the proposed
approach mitigates UDP amplification at line rate and SYN flooding
attacks within a fraction of a second. Moreover, the complete remedi-
ation time of slow DDoS is reduced from near 10 seconds down to 2
seconds. The second use case instruments the switch with a rule-based
Projective Adaptive Resonance Theory (PART) algorithm to accurately
fingerprinting the origin IoT device of network traffic from a single TCP
packet at line rate. We also provide a methodology for automating the
translation of such rule-based Machine Learning (ML) output to P4 pro-
grams, thereby enabling its deployment without the need for additional
background expertise. The proposed fingerprinting engine was evaluated
against a dataset consisting of devices of both IoT and non-IoT in nature.
The results indicate that such devices can be fingerprinted with 99% ac-
curacy. It is our hope that the research undertaken herein not only aids
in the conducting of efficient and effective network forensic procedures
associated with DDoS attacks and IoT devices but also in promoting the
utilization of programmable switches in future forensic research endeav-
ors. Furthermore, we expect that the proposed approach’s automated
translation of rule-based classifiers into P4 code will provoke the subse-
quent harnessing of ML’s pattern recognition abilities for enhancing a
number of other network forensic tasks on the switch.

1. Introduction

A network forensic practitioner’s essential tasks of monitoring, inspecting,

and attributing network traffic to cyber crimes has become increasingly

challenging due to the extent of which such misdemeanors are currently

taking place. Further, these challenges are often compounded by more

sophisticated attacks (e.g., anti-forensic strategies) launched by adversaries.

Several factors have contributed to this increase in cyber crime and attack

sophistication, such as society’s growing dependence upon the Internet,1 the

enhanced inter-connectivity amid modern technology,2–4 an assortment of

open source exploitation code and tools, widely-available attack services

(e.g., DDoS-for-hire), and even the COVID-19 pandemic.5 Moreover, the

immense rates at which information is transferred between contemporary

machines has led to an exponential increase of data that must be analyzed.

2

May 13, 2021 15:32 ws-rv9x6 Book Title main page 3

As a result, the amount of time and resources necessary to conduct effective

investigations has also risen substantially.6

Unfortunately, it is also now commonplace for attackers to leverage

the insecurity of the vast IoT domain for a means of conducting cyber

crime. The excessive heterogeneity of these devices combined with their

expedited deployment by vendors (i.e., leading to subpar security mech-

anisms and patching) has has left adversaries with a plethora of vulner-

abilities to exploit.7 Consequently, a very large uptick in DDoS attacks

has been observed, including some of the largest recorded to date, e.g., the

record-breaking attack on GitHub in 20188 and the majority of the more

pronounced attacks that occurred in 2019.9 Moreover, such vulnerabilities

have been exploited to conduct a broad range of other malicious endeavors,

ranging from gaining entry to critical infrastructure (e.g., power grids10)

to adversaries overtaking upwards of a million devices at one juncture to

launch various campaigns (e.g., spam, cryptomining, etc.)11,12

Ultimately, this extensive attack surface has left the forensic community

with the tall task of investigating and attributing such crimes with largely

offline analysis procedures. To put matters into perspective, a 10 Gbps

flow of traffic using only a two-hour sliding window necessitates 10 TB of

storage, and 20 Gbps utilizing a 12-hour sliding window requiring 1 PB.

Furthermore, these numbers pale in comparison to the large traffic rates

today’s networks often encounter. For example, it has been projected that

backbone networks may experience up to 170 Tbps in 2021.13 Moreover,

while these time-consuming, offline investigation procedures can eventually

lead to attribution of a cyber crime, the resultant delays in identifying

attacks naturally create challenges for mitigating them while they are in

progress. In addition, these delays give adversaries more time to launch

ensuing attacks, evade prosecution after an attack transpires (e.g., via anti-

forensic attempts, fleeing, etc.), and so forth. In turn, investigators have

the monumental task of monitoring and safeguarding the capture of the

offending traffic amid the overwhelming rates of traffic modern networks

observe. Once this objective has been completed, investigators must subse-

quently analyze the resultant stockpile of capture data for viable artifacts

in a very small time window to ensure a successful investigation, circumvent

anti-forensic attempts, and mitigate damages. Indeed, streamlining aspects

this arduous process would dramatically enhance its effectiveness.

Until very recently, performing these responsibilities at line rate as the

malicious traffic is traversing the wire was largely an impossibility with

the excessive limitations of traditional network implementations. This pit-

3

May 13, 2021 15:32 ws-rv9x6 Book Title main page 4

fall is rooted in the fact that the devices handling such traffic are either

software-based or static in nature. In particular, the software-based so-

lutions generally consist of middleboxes, which cannot conduct complex

traffic analysis without substantial degradation to the network’s through-

put. Alternatively, the devices that can offer better processing capabilities

(e.g., switches and routers) customarily have had their behavior encoded

in firmware by vendors and offer extremely limited support for network

forensic endeavors.

Elaborating upon this notion, network topologies generally can be ab-

stracted as being within the control or data plane.14 The data plane is

responsible for delivering traffic from one device to another, whereas the

control plane is essentially the brains of the network and is concerned with

establishing links between routers and exchanging protocol information. In

the case of the aforementioned traditional networks, both of these plains are

integrated into the firmware of routers and switches, and therefore these

implementations have relatively fixed behavior. To offer more flexibility,

Software Defined Networking (SDN) was proposed which explicitly decou-

ples the two planes and implements the control plane in software; thus,

SDN effectively transformed what has characteristically been rigid network

functionality into a more efficient and flexible software development proce-

dure. That being said, SDN is still bounded to a small set of forwarding

protocols (e.g., IP, Ethernet) entertained by the data plane, which severely

restricts the number of applications that can be employed which utilize

the enhanced processing capabilities of the data plane’s forwarding devices.

Moreover, an attempt to amend this short list of protocols to implement

additional applications generally requires years of waiting, given the data

plane has characteristically been made up of proprietary devices with closed

source code.15 As a result, SDN has struggled to keep pace with the exces-

sively dynamic nature of cyber crime.

Fortunately, the P4 language has since surfaced as the de-facto standard

for defining the forwarding behavior of data plane. By way of programmable

switches, the software that dictates the behavior of how packets are pro-

cessed can now be developed, tested, deployed, and amended in a much

shorter time span. Moreover, such behavior can finally be strictly governed

by the given network’s operators, resulting in fully customizable implemen-

tations for network forensic practitioners. In harnessing this newfound tech-

nology, the research conducted herein utilizes programmable data planes to

transform the manner in which network forensics has traditionally been

conducted. In particular, programmable switches can identify and extract

4

May 13, 2021 15:32 ws-rv9x6 Book Title main page 5

forensic artifacts at line rate in order to bypass storing a wealth of capture

data to subsequently analyze offline. Custom switch-based programs can

also use these extracted artifacts in order to fingerprint malicious events in

real time amid Tbps traffic rates. This is in stark contrast to the software-

based intermediary nodes (i.e., middleboxes) employing Intrusion Detection

Systems (IDS), firewalls, etc., which crumble under the tremendous load of

modern networks.

To this end, the notion of leveraging programmable data planes for net-

work forensics applications is introduced by proposing two such approaches

corresponding to the ever-increasing presence of staggering DDoS attacks

and the harnessing of vulnerable IoT devices for malicious endeavors, re-

spectively. In terms of DDoS, note that it can present itself in many forms

and one detection strategy might only be able to detect a specific type it

was designed for.16 For example, while an entropy-related approach might

be effective when a network is experiencing a flooding attack, it likely will

struggle to identify the presence of a stealthier attack. To address this issue,

this work combines multiple novel DDoS fingerprinting techniques into one

unified detection strategy within a P4-programmed switch. Another aspect

of several DDoS detection strategies that can prove problematic is utiliz-

ing static thresholds to identify when an attack is occurring. Typically,

such thresholds need to be calibrated for a particular network’s topology,

its expected traffic, when in the day or week it is used, etc., and can also

be more easily exploited by savvy adversaries. The proposed mechanism

tackles this dilemma by employing dynamic thresholds that adapt to vary-

ing network conditions. To evaluate this strategy, three attack scenarios

were launched, namely, SYN flooding, UDP amplification, and a stealthy

variant, slow DDoS, against the proposed approach deployed on a Behav-

ioral Model version 2 (BMv2)17 software switch. The results confirm that

UDP amplification attacks could be constrained to a dynamically allocated

bandwidth coinciding with the given UDP protocol being leveraged by the

attacker (e.g., NTP, DNS, etc.), at line rate. Additionally, SYN flooding

was shown to be rendered ineffective with benign requests experiencing no

latency, and all other TCP-based DDoS types employing various mixtures

of set flags (e.g., SYN-ACK flood, FIN flood, etc.) were negated entirely.

Finally, the approach was able to restore service to clients endeavoring to

connect to the server within 1 second of the slow DDoS attack consuming

the server’s available connections and to fully remediate the attack by the

following second; this is a substantial difference from past approaches that

wait for the malicious connections with the target server to time out, which

5

May 13, 2021 15:32 ws-rv9x6 Book Title main page 6

ultimately takes around 10 seconds or more.

The second approach aims to offer practitioners a means of promptly fin-

gerprinting IoT device traffic on the network. With the increasing instances

of cyber crime committed by way of these devices,18–23 such artifacts can

be invaluable to conducting effective investigations. To perform this objec-

tive on this switch, a rule-based PART learning algorithm was first trained

on the noteworthy dataset proposed by Sivanathan et al.24 encompassing

a thorough mixture of both IoT and non-IoT devices. From the generated

rules, a unique methodology for translating the ML algorithm’s output to

a compact and practical P4 program was proposed. As a result, the entire

classification algorithm is deployed entirely on the switch to enable line-rate

fingerprinting of IoT devices. The corresponding evaluation of this classi-

fication program on BMv2 demonstrates that the exact device type from

which the given traffic originates can be identified with 99% accuracy from

a single TCP packet. Moreover, a direct correlation between the number

of samples pertaining to a specific device in the dataset and the model’s

classification accuracy was observed, with the devices corresponding to less

training samples suffering from more misclassifications. On the contrary,

all devices with the maximum amount of samples (50,000 in this experi-

ment) were classified with 99% accuracy. It turn, this suggests that highly

accurate device-type classification can be achieved with a sufficient number

and balance of samples in the dataset for each device.

In summation, the proposed approach endeavors to advance the state-

of-the-art by making the following core contributions:

• Advancing the efficiency of network forensic investigations by lever-

aging programmable data planes in order to achieve the line-rate

fingerprinting of both DDoS attacks and IoT devices. The end re-

sult is a dramatic transformation of the traditional time-consuming

offline procedures of filtering a large amount of traffic captures into

that which can be conducted at line rate. Further, the filtering out

of attack traffic effectively circumvents the need to excessively store

a wealth of such irrelevant data.

• Improving upon current DDoS protection mechanisms by provid-

ing a unified network forensic approach for identifying the broad

spectrum of contemporary DDoS attacks within the switch. An

adaptive threshold-based approach is used to trigger both artifact

extraction and subsequent detection in order to mitigate attacks

6

May 13, 2021 15:32 ws-rv9x6 Book Title main page 7

immediately following their inception. The evaluation of three

attack scenarios prevalent in the wild concurs that the proposed

strategy remediates UDP amplification and SYN flooding attacks

in fractions of a second, and reduces the complete mitigation time of

slow DDoS from to upwards of 10 seconds down to 2. Further, the

approach negates all other TCP flooding attacks that fictitiously

set flags.

• Presenting an IoT fingerprinting scheme that accurately identifies

the IoT devices from the traffic they transmit. When evaluated, the

approach was able to identify IoT traffic with 99% accuracy. More-

over, the fingerprinting scheme’s evaluation demonstrates that it is

not only effective for fingerprinting IoT devices from a single TCP

packet, but devices of non-IoT nature as well. In addition, the re-

sults suggest that this procedure can be applied for the fingerprint-

ing of the exact device type on the switch by merely incorporating

more training samples per device.

• Providing a novel automated methodology for converting ML rule-

based output to practical P4 applications on the switch. Further,

the proposed methodology has been specifically designed for com-

pact, parallel processing and thereby is extremely practical given

its small resource footprint; therefore, P4 programs utilizing it can

be employed by network operators next to a multitude of other

network-specific, P4 algorithms, and without the need for addi-

tional training.

The rest of the paper is organized as follows. In the next section, we

cover the related literature. Following these notable works, we discuss some

background information and our motivations in Section 3. In Section 4, we

present the proposed approach and elaborate on the two use cases, namely,

DDoS and IoT fingerprinting. Subsequently, we evaluate the approach and

comment on the performance of each use case in Section 5. Finally, in

Section 6, we revisit the contributions of this paper and offer some im-

provements for future work.

2. Related Literature

2.1. P4-Enabled Analytics

In recent years, the benefits of programmable data planes have garnered the

attention of the research community. Though the ability to program these

7

May 13, 2021 15:32 ws-rv9x6 Book Title main page 8

Relevant Research

P4-Enabled Analytics Traditional Network Forensics

ML Advancements
25–29

ML Integration
30–35

DDoS/HH Detection
36–44

DDoS Forensics
45–55

IoT Traffic Management
56–60

IoT Fingerprinting
61–63,63–67

Fig. 1. Taxonomy of related literature.

forwarding devices is a relatively new technology and yet to be leveraged

for tasks specific to network forensics, a number of recent research efforts

have been presented to enhance network analysis procedures in the context

of IoT-based measurements, addressing disproportional network flows, and

enhancing machine learning implementations, as subsequently detailed and

depicted in the taxonomy in Fig. 1.

Machine learning advancements. With the advantages of ML tech-

niques becoming apparent over past decades, current research efforts have

been studying how to synergize them with programmable data planes.

Given that training ML models is a time consuming process that can last

for weeks, traditional research avenues often endeavor to accelerate the

computation process. With programmable switches, such accelerations can

now be conducted throughout the network for distributed learning. To

8

May 13, 2021 15:32 ws-rv9x6 Book Title main page 9

this end, Sapio et al.25 offered a rudimentary MapReduce application for

performing data aggregation via P4 in an effort to reduce the communi-

cation overhead of exchanging model updates. In a similar context, the

in-network aggregation system proposed by Yang et al.26 was able to re-

duce the job completion time of a MapReduce-like framework by as much

as 50%. Applying a different technique to in-network aggregation, Sapio et

al.27 used workers to perform gradiant vector computations, after which

point the workers send their individual update vector to the P4 switch and

receive back the aggregated model update. As a result, the authors were

able to speed up the model’s training by as much as 300% compared to

existing distributed learning approaches. Providing an alternative for re-

ducing processing overhead, Sanvito et al.28 worked on analyzing options

for partitioning subsets of layers of Neural Networks (NN) to offload to

programmable switches and Network Interface Cards (NIC) for processing.

Another area of P4 research is the harnessing the programmable

switches to perform classification tasks. This scope of study is currently still

largely theoretical, though noteworthy advancements have been made. For

example, Siracusano et al.68 took a noteworthy first-step towards imple-

menting more complex NNs in P4 via presenting a simplified NN utilizing

only the bitwise logic functions that programmable switches can entertain.

Additionally, Xiong and Zilberman29 proposed some possible avenues for

programming various classification algorithms in P4, namely, decision trees,

k-means clustering, Support Vector Machines (SVM), and näıve Bayes. The

authors’ attempted to strike a balance between the limited resources the

switch can use for such tasks and classification accuracy. Conversely to the

bitwise logic means of model simplification leveraged by,68 the algorithms

presented by Xiong and Zilberman29 were more complex, and the authors

stated that it is uncertain as to whether these algorithms will compile on

an actual hardware switch target. The proposed approach herein falls in

line with the goal of the two aforementioned works of switch-based clas-

sification; however, the proposed strategy for automating the integration

of rule-based classifiers entirely on the switch can be updated on-the-fly

as new intelligence arrives without any downtime, and neither sacrifices

accuracy nor the switch’s resources.

Disproportional network flows. The generalized approach to identify-

ing disproportional flows within a network is broadly referred to as Heavy

Hitter (HH) detection. Specifically, HHs are associated with a low number

of flows within a given network that consume a large amount of its band-

width. Their swift detection has long been shown to promote effective net-

9

May 13, 2021 15:32 ws-rv9x6 Book Title main page 10

work management practices,69–71 and has been utilized in accounting70,72

and traffic engineering,73,74 as well as worm and probing detection.75,76

Following this aim, the works of Liu et al.,36 Sivaraman et al.,37 Xing et

al.,38 and Kučera et al.39 extended HH detection efforts to programmable

switches, which allows the traditional approach of employing software col-

lectors residing outside the data plane to be bypassed to enhance both

detection speed and accuracy. To this end, the aforementioned data plane

advances have all enriched the state-of-the-art in HH identification. Ulti-

mately, soft computing-like approaches such as HH detection, which tolerate

a level of uncertainty and partial truth77 due their generic nature, might

not provide suitable evidence to implicate wrong doing in court.78 In turn,

the approach presented in this work reduces the scope of HHs to strictly

DDoS detection, with the primary motivation of prompt fingerprinting for

evidence extraction in order to facilitate network forensic investigations.

A number of other P4 research endeavors have also focused on DDoS

detection. In particular, Zhang et al.40 proposed a range of security poli-

cies for volumetric attack mitigation. In a different approach for addressing

volumetric varieties, Lapolli et al.41 utilized entropy for fingerprinting such

traffic anomalies. In addition, Mi et al.79 presented a deep learning tech-

nique premised upon the Pushback method42 for tackling volumetric DDoS.

To detect a particular type of volumetric DDoS, Febro et al.43 proposed

a means of fingerprinting that exploiting SIP. Alternatively, Scholz et al.44

proposed a SYN flooding defense strategy premised upon SYN authentica-

tion and SYN cookie techniques.

While research efforts specifically tailored to DDoS fingerprinting are

viable candidates for forensic procedures, if a defense mechanism is to be

integrated into the network’s switches, it should address all relevant at-

tacks. This notion poses a problem for the aforementioned DDoS detection

schemes as one of the caveats of the programmable switch technology is

the limited resources of each switch; thus, implementing a number of dif-

ferent DDoS protection programs into the switch’s pipeline in conjunction

with fundamental programs pertaining to packet forwarding, load balanc-

ing, etc., is likely not feasible.80 There is also a need to address the preva-

lence of more advanced DDoS techniques such as slow DDoS, which can

circumvent the detection methods proposed in the aforementioned research

efforts.81 To this end, the work herein proposes a DDoS detection, artifact

extraction, and mitigation scheme that unifies a number of techniques to

function in harmony with one another in order to address an assortment of

relevant DDoS attacks. Additionally, the proposed approach introduces a

10

May 13, 2021 15:32 ws-rv9x6 Book Title main page 11

novel means of providing useful forensic intelligence amid attacks employing

spoofing, by way of clustering configuration artifacts on the switch. This is

in contrast to previous approaches attempting to achieve this aim through

source authentication techniques such a SYN cookies, which can litter the

internet with the corresponding validation traffic and results in detection

latency.

IoT traffic management. The IoT paradigm has unmistakably been per-

vasive and entrenched in contemporary society in recent years. With such

an overwhelming utilization of these devices, the P4 research has focused on

promoting there integration into state-of-the-art networks. One particular

area of emphasis has been the significant percentage of network bandwidth

that is lost while transmitting IoT packet headers. Given that these de-

vices generally have limited processing capabilities, they typically transmit

packets encapsulating small payloads (e.g., a sensor readings), which leads

to large quantities of packets largely comprising redundant headers that

occupy throughput and need to be processed by the network. To this ex-

tent, Wang et al.56,57 and Lin et al.58 proposed a promising solution of

aggregating such packets on programmable switches. This is in contrast

to conducting aggregation on server CPUs which can increase end-to-end

latency and result in the loss of real-time functionality.

Another area of IoT research undertaken by the P4 community is service

automation. Essentially, Low-power low-range IoT communication tech-

nologies characteristically utilize a Peer-to-Peer (P2P) model. While P2P

offers distinct advantages such as low end-to-end latency and reduced power

consumption, it’s also tightly coupled with the drawbacks of subpar scala-

bility, short reachability, and policy enforcement that is inherently inflexi-

ble. To overcome these pitfalls, Uddin et al.59 proposed a programmable

switch that automates IoT services by encoding their transactions in the

data plane and utilizing the controller for address assignment, device and

service discovery, subscription management, and policy enforcement. Ad-

ditionally, the authors subsequently presented an extension60 that supports

multiple non-IP protocols. There is still a need to accurately fingerprint

IoT devices for purposes of the aforementioned approaches and for network

forensic procedures, and is thereby the motivation of IoT device fingerprint-

ing mechanism proposed herein.

11

May 13, 2021 15:32 ws-rv9x6 Book Title main page 12

2.2. Traditional Network Forensics

Network forensics has safeguarded our networks for many years. More-

over, the research community has kept practictioners equiped with state-

of-the-art measures for conducting effective investigations in order to hold

adversaries accoutnable for their crimes. Amid some of the primary areas

of study in this context are ML integration, DDoS forensics, IoT analysis,

which are elaborated upon next and shown in the taxonomy in Fig. 1

ML integration. Capturing network activity lies at the root of network

forensics; however, a large amount of the information captured or recorded

will not be useful for investigations. Moreover, with the increasing rates

of traffic modern-day networks exhibit, this equates to a large amount of

wasted time, storage, and computational resources. In an effort to address

this, Mukkamala and Sung30 employed NNs and SVMs for offline intrusion

analysis in order to fingerprint key features that reveal information deemed

worthy for further intelligent analysis. With a similar goal, Sindhu and

Meshram31 apply the Apriori algorithm to perform association rule learning

to the data their system collects in order to uncover patterns of malicious

activities.

Another area of concern for practitioners has been the increased prolifer-

ation of botnets which has been causing serious security risks and financial

damage. To aid the investigations of such misdemeanors, Koroniotis et al.32

employed association rule mining, an NN, näıve Bayes, and a decision tree

to detect botnets and track their activities, with the decision tree giving

the best accuracy of 93.23%. In a subsequent work, Koroniotis et al.33

facilitated the training and validation network forensic systems by way of

offering a noteworthy botnet dataset. This dataset later enabled the work

of Oreški and Andročec34 which reduced the time needed for optimal fea-

ture selection by employing a genetic algorithm to optimize such parameters

to be fed into an NN. In another botnet forensic undertaking, Bijalwan35

explored the use of eight different ensembles of classifiers, showing the re-

sultant improvement in accuracy over a single classifier. Overall, the afore-

said ML approaches brought forth advancements reducing the amount of

time necessary to analyze large traffic captures for relevant artifacts. Con-

versely, the proposed approach conducts classifications as packets traverse

the switch, which allows events to be flagged and customized actions such

as the storing of evidence in the midst of an attack, in real time. Further,

the presented ML-based method is automated, and thereby circumvents the

need for additional expertise.

12

May 13, 2021 15:32 ws-rv9x6 Book Title main page 13

DDoS forensics. With DDoS attacks not only being a concern for decades

but ever-increasing in intensity and frequency of occurrence, a number of

network forensic research endeavors has been devoted to targeting this

mounting issue. Following suit with the previously articulated benefits

of ML, it also been leveraged for DDoS forensic tasks. One such effort is

that conducted by Hoon et al.45 which aimed to identify the best machine

learning model for offline DDoS forensics, finding that näıve Bayes, gradi-

ent boosting, and distributed random forests were the most optimal. The

approach taken by Kachavimath et al.46 affirmed the effectiveness näıve

Bayes and additionallly showed that k-nearest neighbors too outperforms

conventional learning models. Similarly, Fadil et al.47 utilized näıve Bayes

to perform DDoS forensics on network traffic extracted from a core router

via packet captures. Conversely, the proposed approach herein performs

such detection as the traffic is traversing the switch. Yudhana et al.48 also

implemented a näıve Bayes classifier, however they additionally integrated

a NN for conducting DDoS forensics.

Taking a more traditional approach to DDoS forensics, Zulkifli et al.49

exercised live forensic log file analysis to identify a Denial of Service (DoS)

attacks via Wireshark.82 This live approach is in contrast to typical foren-

sic procedures, which are executed while the system is down.83 Another

challenge for DDoS investigations has been the rise in both attack and be-

nign traffic that networks typically observe.45 Moreover, such a steep rise

has proportionally led to a sharp growth in attack log files sizes. In an

attempt to reduce the time to perform the corresponding analysis to at-

tribute sources and victims of DDoS attacks, Khattak et al.50 proposed

using Hadoop’s MapReduce. Similarly, Khattak and Anwar51 leveraged

MapReduce to parallelize the entropy-based clustering and forensic analy-

sis of attack traffic to safeguard nodes in a cloud environment to decrease

log file analysis. In building upon this aim, the proposed approach presents

a technique for performing this traditionally offline procedure in a live fash-

ion via programmable switches, which allows evidence to be obtained at line

rate while the attack is simultaneously mitigated.

Additionally, Aydeger et al.52 also worked on mitigating DDoS attacks

such as Crossfire by utilizing SDN in conjunction with Network Function

Virtualization (NFV) to provide a Moving Target Defense (MTD) frame-

work for ISP networks to conceal network topologies. The authors also

permitted the storing of information pertaining to potential attackers for

investigations. Alternatively, the methodology introduced herein pushes

relevant attack evidence to a collector for subsequent analysis immediately

13

May 13, 2021 15:32 ws-rv9x6 Book Title main page 14

upon detection to eliminate benign traffic data excessively consuming stor-

age. P4-programmed switches process packets in nanoseconds, and allow

practitioners to easily add customized code for evidence extraction once

such maliciousness has been fingerprinted. Other network-specific DDoS

forensic works include machine-to-machine networks presented by Wang et

al.,53 mobile ad hoc networks by Timcenko and Stojanovic,54 and networks

encompassing cellular devices by Cusack et al.55 Further, with slow DDoS

via mobile devices being a growing concern,84 Cusack et al.55 endeavored

to idenitfy the presence of such attacks based upon the Euclidean distance

similarity between the protocol (e.g., HTTP, HTTPS, etc.) counts of a past

and present log file. Since this technique can lead to both false positives and

negatives given the randomness of traffic patterns, the proposed approach

employs a novel interarrival time analysis scheme that facilitates investiga-

tions by fingerprinting, attributing, and mitigating slow DDoS attacks in

real time.

IoT fingerprinting. With the IoT paradigm being tied to a number

of inherent vulnerabilities and responsible for a large number of botnet-

facilitated DDoS attacks, investigating crimes conducted by way of these

devices is now fundamental to network forensics. In turn, fingerprinting

traffic originating from them has recently attracted significant attention

from both the research community and the industry in order to identify

events of interest and extract relevant artifacts. With ML’s ability to rec-

ognize patterns in network traffic, it is generally leveraged for IoT finger-

printing tasks. Among these, Meidan et al.61 used supervised learning

trained upon deep packet features in order to distinguish between IoT and

non-IoT devices, and to associate each IoT device to a specific class. Yang

et al.62 utilized both deep packet and header features to train a NN in order

to generate IoT fingerprints. Alternatively, Sivanathan et al.63 leveraged

SDN-based, flow-level telemetry combined with machine learning for IoT

classification. In another approach based upon SDN, Thangavelu et al.64

assigned classifier maintenance to the controller and the actual tasks of clas-

sifying IoT devices to the gateways. The gateway devices utilize software for

classification (i.e., unscalable to high traffic rates63), which differs from the

hardware based classification approach proposed herein which ensures line-

rate processing amid heavy traffic loads. Further, the proposed approach

classifies devices from the headers of a single TCP packet which necessitates

nanoseconds in hardware versus the session or flow-level analysis utilized

in64 and,63 respectively, which gives a classification time upper-bounded by

the time to analyze the encompassed successive packets. Taking a different

14

May 13, 2021 15:32 ws-rv9x6 Book Title main page 15

approach, Feng et al.65 used IoT application-layer response data coupled

with product descriptions from relevant websites to generate an Acquisi-

tional Rule-based Engine (ARE) to classify devices. Conversely, Perdisci

et al.66 only uses DNS fingerprints IoT device classification. Lastly, Pin-

heiro et al.67 five different classifiers trained with packet length statistics to

identify IoT devices, from which the Random Forest algorithm achieved the

highest accuracy of 96%. While all the aforesaid works advanced the state-

of-the-art in IoT device fingerprinting for network forensic intelligence, all

but63 and64 performed offline procedures which leads to delays in detec-

tion and attribution of criminal behavior, which is in stark contrast to the

P4 switch-based approach which can fingerprint devices and execute corre-

sponding customized actions as a single packet originating from the device

traverses the switch’s pipeline.

3. Background

3.1. A Primer on Programmable Switches

As previously mentioned, SDN provided an effective means of separating

the control plane from the forwarding devices of the data plane. The data

plane table entries are then populated by way of protocols such as Open-

Flow,85 and the control plane exposes interfaces for third-party applications

where programmers can apply customized logic for the population of ta-

ble entries. Despite the data plane customization that this allows for, the

latest OpenFlow specification (OpenFlow 1.5.186) is constrained to 45 head-

ers, which dramatically limits the range of applications that can be used.

Further, attempts to modify or add headers generally translates to about

4 years of waiting.15

Alternatively, recent efforts have been devoted to developing switches

that allow for full data plane ASIC programmability via domain-specific

languages such as P4.87 Along with allowing for customized network im-

plementations, programmable switches do not incur performance penalties

and run on ASICs at line rate with terabit speeds. For example, the Tofino2

ASIC processes packets at 12.8 Tbps.88

At the root of this advance’s inception is the Protocol Independent

Switch Architecture (PISA), which is depicted in Fig. 2. As shown, an

incoming packet enters the programmable parser where it is parsed into

individual headers (parsed representation), and where states and transitions

are defined. Subsequently, the packet flows sequentially into each stage of

15

May 13, 2021 15:32 ws-rv9x6 Book Title main page 16

the Programmable Match-Action Pipeline where match-action unit tables

are applied. It is these tables where various header and metadata fields are

typically matched on in order to provide customized behavior. Additionally,

programmable data planes possess the distinct ability to perform stateful

packet processing by way of storing data across packet traversals of the

switch via counters and registers. As a result, network owners can leverage

these storage mechanisms to implement their own complex processing logic

that operates at line rate. Once the P4 program is written, it is transformed

into binaries for the target architecture by the compiler provided by the

particular target switch’s vendor. In addition, the compilation produces

interactive APIs that the control plane uses to interact with the data plane.

Pr
og

ra
m

m
ab

le
Pa

rs
er

Pr
og

ra
m

m
ab

le
D

ep
ar

se
r

Programmable Match-Action Pipeline

Match Logic Action Logic

Packets

Fig. 2. Programmable switch architecture

3.2. Motivating Line-Rate Network Forensics

Typically, network forensics entails the storing of all observed traffic on the

network via packet captures, saving sampled traffic information, or logging

network events of interest. In all cases, investigations generally necessi-

tate the later inspection of this information. Naturally, the capturing of

each and every packet traversing the network has an increased potential of

encapsulating forensic artifacts when present; however, this is achieved at

the clear cost of storage and the time complexities associated with process-

ing the captures. An alternative approach is conducting such analysis in

an online fashion. To employ an online analytics strategy, the assistance

of software-based middlebox techniques (e.g., Intrusion Detection Systems

(IDS), firewalls, etc.) are generally warranted. These approaches are de-

16

May 13, 2021 15:32 ws-rv9x6 Book Title main page 17

ployed in-line, meaning that network traffic will be processed by them prior

to it reaching its destination.

While middleboxes are supported by well-crafted methods and algo-

rithms for inspecting and filtering malicious traffic, software-based solutions

suffer from serious concerns in terms of performance, cost, and agility.63

For example, DDoS attacks are now synonymous with leveraging terabits

of attack traffic, which is a rate that is impossible to handle with current

software solutions.16 The end result is a significant degradation in the

network’s throughput, which in turn affects resource utilization. Moreover,

packets inspected by software lead to a considerable increase in latency and

jitter, which impacts the Quality of Service (QoS) of latency-sensitive ser-

vices and user experience. Furthermore, this phenomena not only applies

to DDoS attacks, as the increasing utilization of the Internet has resulted

in a variety of networks experiencing exorbitant traffic loads.89

In addition to network performance, software-based approaches necessi-

tate additional costs to keep up with such traffic rates. While incrementing

the number of hardware resources employed will solve the problem, ulti-

mately a steep rise in operational costs and management complexity will

arise. Note that adding resources is a temporary patch given the aforemen-

tioned trend of growing traffic rates.

Lastly, proprietary middleboxes are closed source; thus, practitioners

cannot readily modify algorithms or develop custom solutions that imple-

ment the latest forensic intelligence. The nature of cybercrime is dynamic,

and adversaries are constantly utilizing new attack vectors and surfaces. At-

tempting to mitigate such maliciousness with middlebox-based techniques

is a daunting task given the challenge of keeping them current without ven-

dor support. Conversely, programmable data planes address each of the

aforementioned shortcomings. They are not only cheap to deploy but allow

practitioners to customize the processing logic, that once compiled, func-

tions at line rate amid substantial traffic loads. Therefore, these forwarding

devices offer the cost-effectiveness, agility, and necessary performance to

meet the demands of contemporary network forensic tasks.

4. In-Network Forensic Use Cases

To effectively demonstrate the abilities of programmable switches to assist

in the network forensic process, two use cases are detailed in this section

in order to provide an in-network means of fingerprinting an assortment of

DDoS attacks and IoT devices. The particulars of each use case are high-

17

May 13, 2021 15:32 ws-rv9x6 Book Title main page 18

lighted, along with how the intricacies of each approach are implemented

on the switch.

4.1. Assessing DDoS

The first of the two approaches entails aggregating a number of unique

DDoS detection strategies into one uniform network forensic methodology.

To perform such aggregation, note that while a variety of DDoS attacks are

currently exercised by adversaries, they can essentially be encapsulated by

the binary classification of volumetric or stealthy (i.e., slow DDoS); thus,

this proposed technique utilizes two schemes for detecting the assortment

of relevant DDoS attacks, which are elaborated upon next.

4.1.1. Slow DDoS

What has been termed slow DDoS takes a stealthy approach to denying

service to a targeted network via endeavoring to tie up the server’s available

connections in order to deny authentic clients access. These attacks utilize

legitimate TCP behavior and send malicious packets at a frequency similar

in intensity to that of benign traffic, which makes such malicious traffic

incredibly hard to detect by way of traditional anomaly and signature-

based techniques.16,90

To effectively fingerprint these stealthy attacks, the stateful processing

of programmable switches is leveraged in order to track the active sessions

on the server being targeted by the attacker. In particular, a record of

each authentic session an outside entity retains with the target server is

stored within the switch’s registers. The utilization of the switch’s reg-

isters (versus pushing data to the controller for storage) enables line-rate

functionality as this is performed entirely on the switch hardware. Note

that by maintaining such records, all assortments of TCP flooding attacks

are effectively eradicated because they are not associated with any current

valid connection with the server, as implied in Fig. 3. This is due to the

fact that TCP flooding variations set a variety of erroneous flags without

first establishing a connection (aside from SYN flooding which is addressed

by the approach with a different technique), which is designed to exhaust

the target server’s resources, or some semblance of both.

In order to generate statistics with respect to each active session held

with the server for real-time detection purposes, the switch first associates

all such sessions with their corresponding source IP addresses. Note that

source IPs are relevant artifacts for slow DDoS as it does not leverage

18

May 13, 2021 15:32 ws-rv9x6 Book Title main page 19

DDoS Attacks

Slow DDoS

SYN
Floods

UDP
Amplification

Fictitious
TCP Flags

Distribution
Calculation

Dynamic
Threshold

Real-time
Protocol

Bandwidth
Bounding

Dynamic
Protocol

Bandwidth
Threshold

Controller

Traffic
satisfying
dynamic
threshold

P4 Switch

SYN
Floods

Distribution
Calculation

Signature
Fingerprinting

Line-rate TCP
session tracking

Distribution
Calculation

Dynamic
Threshold

SYN Floods

ICMP-based
DDoS

Fig. 3. DDoS detection approach overview.

spoofing because a legitimate interchange of packets between the source

and destination IP addresses is fundamental to executing the attack. That

being said, storing all the IP addresses that could potentially be observed

naturally induces resource consumption issues. To address this issue, a

65,536 cell Bloom filter is held on the switch, which is instantiated as a reg-

ister array. Bloom filters offer the distinct advantages of storage efficiency

and O(1) access times. In this implementation, the index of the register to

be accessed in the Bloom filter is determined from the result of a Cyclic

Redundancy Check 16-bit (CRC16) hash of the source IP address. The

overview of the Bloom filter’s behavior is shown in Fig. 4. In this instance,

the registers of the Bloom filter are responsible for holding the timestamp of

the last packet received from the given index. This proposed fingerprinting

strategy leverages timestamps as the foundation of its detection mecha-

nism given interarrival times are a distinguishing factor of a slow DDoS

occurrence. Specifically, slow DDoS keeps interarrival times long enough

as to conserve the attacker’s resources and not stand out amid the flow of

legitimate traffic, but not too long as to be timed-out by the target server.

This behavior can be observed in the source code of implementations of this

attack, such as in that of R U Dead Yet? (R.U.D.Y.)91 and Slowloris.92

When a packet arrives at the switch and is found to be holding an

active session with the server, the interarrival time (timestampcurrent −
timestampprevious) of this session is extracted. Once this occurs, this value

19

May 13, 2021 15:32 ws-rv9x6 Book Title main page 20

Packet

Input to Hash
Function h

Index of
Hash Table

0

2377

2380

65535

0

2377

2380

65535

Bloom Filter

x
7

x0

8

nx

x

y0

y

y

y

n

8

7

Sample Hash Output
h = CRC 16-bit Hash Function

Fig. 4. In-network stateful artifact tracking by way of a Bloom filter.

is subsequently matched against ranges of interarrival times in one of the

switch’s match-action tables. Each of these table entries of interarrival time

ranges are associated with direct P4 counters, meaning a corresponding

counter is incremented for each match. At the end of each designated time

window W , these counters are received by the controller as a counter array

and subsequently analyzed. By way of a Python script, the controller uses

these counts to formulate a distribution of the interarrival rates observed

on the network during W . Note that proceeding in this fashion accounts for

traffic patterns that are varying during busy or slow times. It is from this

distribution that the detection strategy fingerprints anomalies associated

with slow DDoS, i.e., abnormally-lengthy interarrival times. Further, given

that this distribution of current network traffic is updated in real time, the

switch can use its line-rate processing abilities to immediately identify such

stealthy attacks.

Note that while merely employing a dynamic anomaly threshold ad-

dresses the pinpointing of slow DDoS amid varying legitimate traffic rates

the network may observe, there is a chance that benign users with very

slow connections could falsely be identified as malicious. In order to mini-

mize any such impacts these users, it is paramount to impose the anomaly

threshold on an as-needed basis, namely, only when the total number of

connections the server has to offer are nearly all consumed. In addition,

because an interarrival time calculation inherently necessitates the analysis

of two subsequent packets from the same source IP, this poses a challenge

if the detection mechanism waits until the all of the server’s available con-

nections are consumed before it acts, i.e., resulting in 10 seconds of DDoS

for the network from an attack employing 10 second interarrival times.

20

May 13, 2021 15:32 ws-rv9x6 Book Title main page 21

As a result, it is necessary to act preemptively. To this effect, the pro-

posed approach aims to identify the number of session establishments that

can be expected to occur during Wi. The switch then strives to preemp-

tively keep such expected number of such session establishments E open at

all times during Wi+1. We argue that this minimizes the aforementioned

false positives considering that slow DDoS interarrival times are generally

much higher than that of benign users with sluggish connections. This is

because if an attacker instrumented enough source IPs to consume all of

the target server’s available connections, using relatively-normal interrival

times, the attack as a whole would lose its stealthiness as it would ap-

pear rather volumetric in nature. To incorporate this preemptive measure,

the switch maintains a register holding the maximum number of session

establishments which occur during time window W without any of the

currently-established sessions closing. Upon the expiring of W , the con-

troller computes the 10 second moving average of this register, estav. In

turn, the proposed approach can effectively identify a threshold for drop-

ping slow DDoS connections when less than estav threads exists during W ,

as given by: ∫ ∞

thresh

f(x)dx =
estav

max(sessions)
. (1)

4.1.2. Volumetric Analysis

Middlebox or server-based software volumetric DDoS defenses often result

in degradation to a network’s throughput. This is because they simply

cannot keep pace with processing the large amounts of traffic that these

attacks are now generating. Conversely, the proposed volumetric detection

scheme utilizes the switch’s stateful storage in order to circumvent the need

of such CPU-based implementations. In particular, the bandwidth artifacts

utilized by TCP, UDP, and ICMP are stored within the switch’s registers

in Bps. This is relevant considering the direct proportionality between the

bandwidth being consumed and the resource depletion of targeted server.

In turn, by determining the bandwidth consumed at regular time windows

W while the network is not experiencing an attack, volumetric DDoS will

produce an anomaly (i.e., a deviation from the network’s normal link sat-

uration) if it transpires. These overarching bounds (Tallocatedi
) are deter-

mined by assesses the expected throughput for each of the aforementioned

protocols via the following equation:

Tallocatedi
= Btotal ∗

Tmeasuredi∑
s∈(S) Tmeasureds

, (2)

21

May 13, 2021 15:32 ws-rv9x6 Book Title main page 22

where Btotal is the total amount of bandwidth allowed, Tallocated is the

throughput allocated per transport protocol, Tmeasured is the current be-

nign throughput measured by the switch during time window W , and i ∈ S

where S = {TCP, UDP, ICMP}. By bounding the protocols by Tallocatedi
,

the remaining protocols S− i will function unimpeded if protocol i is being

used to deliver a volumetric attack. Aside from the majority of TCP flood-

ing which was previously addressed, namely, that sending fictitiously-set

flags, not that this mechanism can impact service to any benign entities

also using i. In turn, further action must be taken to minimize such collat-

eral damage.

For ICMP traffic, reducing impact to its legitimate use is first promoted

by not electing to adopt the approach taken by many modern-day networks

of simply blocking all ICMP traffic at the edge for security purposes. The

motivation for doing so is that it is often essential to circumvent issues with

diagnostics and performance.93 Secondly, such traffic is dropped when the

header field Type equals 0, 3, 4, 5, 8, and several others that have been

deprecated.94 As a result, various sub-classes of ICMP-related attacks and

vulnerabilities are eradicated.95 The Bps of the remaining ICMP traffic is

then recorded by the switch and bounded by TallocatedICMP
.

Minimizing the impact benign entities using UDP is especially rele-

vant. UDP encompasses a large assortment of underlying services and at-

tempting to only bound the throughput of all UDP traffic by TallocatedUDP

allows an attack using a single UDP-based service to DDoS all other UDP-

encapsulated services. It is also important to note that UDP notoriously

coincides with amplification attacks because some UDP-based services’ re-

sponse is much larger than the initial request. In turn, adversaries can

easily send requests resulting in response traffic that reaches magnitudes

far exceeding that which they needed to transmit. In turn, this type of

attack can either consume the network’s server or bombard another target

with responses from the network’s server via the adversaries spoofing the

source IP of the initial requests (reflection attacks96). In fact, amplification

resulted in the largest Tbps DDoS attacks to date.97,98 To address both am-

plification and impact to benign entities, the proposed strategy conducts

real-time distribution calculations via recording the Bps per application

layer amplification protocol (identified on the switch via the destination

port) over a moving average of time window W . For the sake of simplicity,

the remaining application layer protocols that are associated with ampli-

fication are grouped into one distribution calculation. In the event more

fine-grained consideration for such remaining protocols is needed, this tech-

22

May 13, 2021 15:32 ws-rv9x6 Book Title main page 23

nique can easily be amended with no added latency and very little addi-

tional consumption of the switches resources, namely, one extra register,

counter, and port match entry per added service. Similarly to the strategy

elaborated upon in Section 4.1.1, the Bps counts are extracted by the con-

troller upon the completion of W . The controller then calculates the new

threshold for each of these services and pushes them back to the switch.

The switch subsequently stores these values in its registers and enforces

them at line rate. Note by analyzing both the source and destination ports

of incoming UDP traffic, the proposed strategy vanquishes attempts by at-

tackers to both target or leverage (for a reflection attack) the network’s

server.

In terms of volumetric TCP attacks, as shown in Fig. 3, SYN flood-

ing remains to be addressed. Given that SYN flooding generally entails

spoofing of a large amount of SYN requests in order to saturate the target

with empty transactions, it becomes difficult to segregate malicious request

traffic from that of a benign nature. A common technique employed in the

past is to merely block all SYN traffic amid such an attack, i.e., effectively

denying service to all new end users as a means of mitigation. Alternative

approaches have since been proposed, such as SYN cookie techniques, how-

ever they incur latency and often litter neighboring networks with response

traffic.99 To address these gaps in the literature, the proposed approach

implements a signature matching scheme via hashing the headers of ingress

SYN packets that have the tendency to imply different TCP/IP implemen-

tations, such as TTL, Window Size, etc. This strategy is motivated by

the fact that an adversary will generally target specific vulnerabilities (e.g.,

from a certain Operating System (OS) version100,101); therefore, there ex-

ists a strong likelihood that the machines exploited by this adversary to

transmit the attack will possess the same signature.

The signature artifacts are maintained on the switch by of a counting

Bloom filter. This Bloom filter functions similarly to that previously dis-

cussed in Section 4.1.1, however it is the configuration headers that are

hashed to obtain the index of the register array, and the value stored in

the given register is merely count of how many times that register has

been hashed to. The highest counts within this array are stored in addi-

tional registers on the switch to be be compared against. The reason for

storing multiple counts is in this event the passive signature matching pro-

cedure does not fully identify all the malicious sources; thus, blacklisting

only the sources with the highest count might not be sufficient to mitigate

the attack. In turn, the sources with the highest counts are incrementally

23

May 13, 2021 15:32 ws-rv9x6 Book Title main page 24

blacklisting until the SYN request rate falls below a desirable threshold in a

given W . As a result, there is less likelihood that legitimate end users will

inadvertently be blacklisted by the SYN flood’s mitigation strategy. To

calculate the aforesaid threshold dynamically, the switch first counts the

SYN packets it observes during W . Upon the expiring of W , the switch’s

data is transmitted to the controller. At this point, the controller calculates

the 10 second moving average of SYN requests and returns the resultant

value (plus two standard deviations) to the switch to be used as a dynamic

threshold.

4.2. Fingerprinting IoT Devices

With the plethora of vulnerabilities surrounding IoT couple with the in-

creasing utilization of these devices, the value in extracting IoT-specific

artifacts for investigations is evident. To date, the most effective means of

fingerprinting IoT devices is by way of ML. To this end, the state-of-the-art

research in P4 has been endeavoring to uncover a practical means of inte-

grating ML functionality into the switch’s pipeline.25–27,29,68 The primary

reasons for doing so are either (1) to leverage the boost in speed that the

switch’s hardware can offer (e.g., for distributed learning applications) or

(2) to harness the classification abilities of ML within a network context.

Though a few noteworthy works have been proposed addressing some nu-

ances pertaining to (1), a viable and practical solution is still ultimately

lacking in terms of (2).

One concern with (2) is whether switches can execute quantized ver-

sions of complex classification algorithms with acceptable loss to accuracy.

Another debate that has arisen with (2) is such algorithms can consume

a large amount of the switches limited resources and therefore, if it is re-

alistic from an economic standpoint to have a switch strictly dedicated to

classification tasks. We address these issues with (2) in this use case via

identifying an ML algorithm that accurately fingerprints IoT devices with-

out the need for any quantization and map it to the switch’s pipeline in a

highly efficient manner, as subsequently detailed.

4.2.1. Switch-Based Constraints

One of the trade-offs with leveraging the efficiency of a programmable

switch is operating within its strict resource constraints. One means of

meeting these tight resource bounds is by offloading tasks to the controller.

That being said, such approaches can be susceptible to additional latency

24

May 13, 2021 15:32 ws-rv9x6 Book Title main page 25

due to communication and calculation delays. Whether or not this la-

tency is acceptable is generally based on the application. Additionally, if a

strict data plane application is preferred, only specific computations (e.g.,

simple comparisons, bitwise operations, addition, and subtraction) and a

small predefined number of algorithmic operations (limited by the number

of stages utilized) can be performed.39

While the set of computations that can be practiced within the switch

is clear, a notion that cannot be understated is that of stages. Though

internal switch configurations are vendor-specific and generally not dis-

closed to the public, it is common to employ a little over ten stages in pro-

grammable switches.102 A stage is allocated its own dedicated resources,

such as match-action tables and register arrays. Operations within a stage

function independent of each other (i.e. in parallel). Though stages can

pass information to subsequent stages via modifications made to a given

packet’s header fields and metadata, the operations encapsulated from one

stage to another execute sequentially at runtime. As a result, the amount

of sequential operations that a programmable switch can entertain are

bounded by the number of stages the hardware switch possesses. While the

choice of operation placement typically made by the compiler, it is based

on whether the aforementioned operations possess dependencies (i.e., they

need to be executed sequentially). For example, if meta variable1 = value1
and meta variable2 = meta variable1 +1, these operations will necessitate

2 separate stages. Moreover, if intermittent stages are being filled by other

P4 programs, a dependency-ridden implementation might not compile on

an actual hardware switch.

In order to offer line-rate IoT artifact extraction to network forensic

practitioners, the proposed IoT fingerprinting ML mechanism is converted

to a resource-friendly implementation that operates entirely within the data

plane. As a result, its processing is performed at a relatively constant rate

as traffic traverses the switch (i.e., within nanoseconds). In particular, the

Projective Adaptive Resonance Theory (PART) learning algorithm103 is

harnessed for the fingerprinting procedure. PART is a partial decision tree

algorithm for rule-based classification; each rule corresponds to one traver-

sal down the tree to a given class. Contrary to the comparable C4.5104

and RIPPER105 algorithms, it can generate the appropriate rules without

the need to perform global optimization and hence is a more efficient al-

ternative. Further, the proposed approach’s mapping of classifier output

to P4 applications can be expeditiously applied to any such rule-based ap-

proach while being extremely conservative with the aforementioned limited

25

May 13, 2021 15:32 ws-rv9x6 Book Title main page 26

resources of the switch, as subsequently elaborated upon.

4.2.2. Meeting Hardware Restrictions

With the proposed fingerprinting approach residing strictly within the data

plane, it is paramount that it meets the aforementioned tight bounds of such

implementations. To address this aim, we convert the rules generated by

PART to match-action tables in the switch’s pipeline. Essentially, each

of these rules encompasses a group of comparison statements, with the

number of statements within each rule i falling within the set Si = {x |
x ∈ N ∧ x <= |f|}, where |f| denotes the number of features used for the

classification. It can be observed in Fig. 5 how each of these rules arrives

at a particular class.

tcp.dport > 139 AND tcp.dport >
445 AND ip.off <= 0 AND ip.ttl <=

64 AND tcp.win > 3012:
HPPrinter (343.0)

tcp.dport <= 139 AND
tcp.win <= 4436 AND

tcp.flags <= 2: AmazonEcho
(1552.0)

Rules

tcp.dport
tcp.win

tcp.flags

Match-Action Tables
corresponding to each feature

AmazonEcho

Dropcam

Devices

HPPrinter

Iphone

Fig. 5. Match-action tables corresponding to each feature

4.2.3. P4-Specific Features

With resource conservation in mind, recall that the programmable parser

extracts header values prior to the match-action pipeline. This translates to

packet header data being stored in variables (i.e., so they can be processed

by the switch in its pipeline) without using any of the valuable switch stages

for assignment operations. To leverage this notion, the PART algorithm

is trained specifically only upon headers in order to determine which are

best utilized for IoT device fingerprinting. The headers instrumented as

features are denoted in Table 1. As shown, there are ten features in total

(i.e., |f| = 10).

26

May 13, 2021 15:32 ws-rv9x6 Book Title main page 27

Feature List

ip.len ip.id ip.off

ip.ttl ip.sum tcp.sport

tcp.dport tcp. off

tcp.win tcp.flags

Table 1. IP and TCP header-based features used for fingerprinting

4.2.4. Parallel Processing

Building upon the strict employment of header-based features for classifi-

cation, it should be noted that the variables that the programmable parser

stores the header values in are entirely independent of one another. In turn,

all features can be evaluated in parallel because there are no dependencies

between them, as previously explained in Section 4.2.1. Further, evaluating

whether each of these features match an explicit range or value requires no

other operations other than hard coding the values to be matched against

as keys in the switch’s match-action pipeline. As a result, proper imple-

mentation of the PART feature evaluation component of the P4 program

facilitates parallel processing, and in turn, uses a minimal number of con-

sumed stages.

4.2.5. Match Table Mapping

To facilitate the generation of a program that can be updated by network

operators upon the arrival of any new fingerprinting intelligence, whether

during initialization or runtime, the program must be constructed in such

a manner where this needed flexibility exists strictly within the entries of

the match-action tables. This is because while the entries in the match-

action tables can be added or removed effortlessly at any point during the

program’s execution, the allocation of the tables took place during the

program’s compilation and are therefore static. To this end, the proposed

fingerprinting approach employs a shell made entirely up of tables, i.e., the

actual P4 code that is visible to the forensic practitioner and will not be

modified. This shell is only dependent upon the features utilized (i.e., the

header values trained on). The shell encompasses one table per feature,

followed by a single fingerprinting hash table to perform the classification.

Each of these tables are instantiated via a simple apply statement, as shown

by Alg. 1.

In turn, the number of tables implemented is always equal to |f| + 1.

27

May 13, 2021 15:32 ws-rv9x6 Book Title main page 28

Algorithm 1 P4 implemenation algorithm.

Control Ingress {
apply(ip len tbl);

apply(ip id tbl);

apply(ip off tbl);

apply(ip ttl tbl);

apply(ip sum tbl);

apply(tcp sport tbl);

apply(tcp dport tbl);

apply(tcp off tbl);

apply(tcp flags tbl);

apply(tcp win tbl);

apply(hash fingerprinting tbl);

}

Further, because the feature analysis can be conducted in parallel, the IoT

fingerprinting approach only necessitates two stages in the programmable

switch pipeline, namely, the feature tables followed by the device classifi-

cation. Each of the feature tables has a declared action() (i.e., performs

processing based on the key that was matched) that merely assigns a result

to a single metadata variable which holds that table’s match result (i.e.,

the result of that feature’s evaluation). Each result falls within the set

Tresult = {j | j ∈ N∧j <= |K|}, where K is the ranges a particular feature

must be evaluated against. Effectively, each feature matching result can be

thought of as one feature check in the rules (such as that depicted in Fig. 5)

that, when grouped together for all features, correspond to a classification.

Thus, once the features to be evaluated for a given classification task have

been decided upon, it is only the match ranges (i.e., the tables keys) that

can vary after retraining the PART algorithm for this implementation. In

turn, the proposed fingerprinting approach for translating rule-based clas-

sification schemes to P4 programs can be generalized to any rule-based

classification task, given any additional functionality incorporated by prac-

titioners falls within the switch’s resource constraints.

4.2.6. Device Fingerprinting

Once the feature tables are applied, the remaining stage consists of fin-

gerprinting the device based upon the aforementioned results of the feature

tables. With these results being held in 10 respective feature metadata vari-

28

May 13, 2021 15:32 ws-rv9x6 Book Title main page 29

ables, device fingerprinting is achieved by performing a single hash of the

aggregation of the returned feature table results. In turn, the output of the

hash acts a unique device identification (ID), which acts as its fingerprint

for forensic investigations. Further, the textual representation of the spe-

cific device can be obtained by matching the device ID against the unique

hashes held by the controller, which can be immediately computed after

the PART algorithm has generated the rules from its training. Moreover,

specific behaviors can be defined on the switch to take the appropriate mea-

sures when the hash of a given type of device’s packets traverse the switch.

This entire process of fingerprinting the IoT device necessitates exactly one

traversal of a SYN packet, which the switch can compute in nanoseconds.

4.2.7. Automating Program Configuration

Mapping the rule-based ML classifier output into the switch’s match-action

tables can be achieved by way of the controller upon switch initialization,

or at any time during execution. The method for automating this strategy

is depicted in Fig. 6. The underlying motivation for proceeding in an

automated fashion is twofold: (1) the ML mechanism can be leveraged by

practitioners regardless of background expertise and (2) the implementation

allows for the freedom of updating the model while the approach is running

or offline. As shown in Fig. 6, the rule-based classifier feeds its trained

rules to the control program. These rules are then processed by a Python

script residing on the controller. The script’s pseudocode is articulated

in Alg. 2. By way of the compiler-generated API for interacting with

the switch, the controller first removes the existing entries in the switches

tables. Subsequently, the controller repopulates the tables with the updated

entries by adding the output from Alg. 2. The match-action tables in the

switch pipeline shown in Fig. 6 perform ternary matching in order to

determine if a given number falls within a specific range. As shown in Alg.

2, the lower k and upper k + 1 bounds corresponding to each feature j for

a given rule are stored in Tmatrix[j, k]. These bounds are sorted to act as

a division of the ranges held by K.

5. Evaluation

To assess the effectiveness of both the DDoS detection and IoT fingerprint-

ing network forensic use cases, an evaluation of both was conducted and

detailed in this section. With the proposed DDoS network forensic de-

29

May 13, 2021 15:32 ws-rv9x6 Book Title main page 30

Algorithm 2 Converting classifier output to P4 table entries.

Result: P4Runtime table population commands

l← rule list

Tmatrix ← [|l| ∗ 2, |~f |]
j ← 0

while f in ~f do
k ← 0

while rule in l do
n← count(devices)

if f then
Tmatrix[j, k]← boundlower

Tmatrix[j, k + 1]← boundupper
k ← k + 2

end

end

end

while row r in Tmatrix do
sort(Tmatrix[r,])

end

while column c, row r in Tmatrix do
write ternary range Tmatrix[r, c] to feature table f [c]

end

tection and mitigation use case tackling the broad spectrum of currently

relevant attacks, three of such scenarios were employed that generalize well

to contemporary DDoS attack vectors, namely, SYN flooding, UDP am-

plification, and Slow DDoS. Alternatively, the IoT fingerprinting use case

necessitated a single scenario to measure its ability to fingerprint such de-

vices entirely within the switch amid a stream of traffic passing through

it.

5.1. Environmental Setup

The experimental topology shown in Fig. 7 was employed to evaluate

the DDoS detection and mitigation use case and was implemented on

Mininet106 in conjunction with the BMv2 software switch. The underly-

ing OS utilized was Ubuntu 16.04.6 LTS, with 16GB of memory and eight

Intel Xeon Gold 6130 CPUs running at 2.10GHz. Fig. 7 also denotes the

six clients which were connected to the P4-programmed software switch by

30

May 13, 2021 15:32 ws-rv9x6 Book Title main page 31

Control Program

Remove Add

Match
Action

Match
Action

P

a

r

s

e

r

D

e

p

a

r

s

e

r

Queues
&

Buffers

Trained Classifier
Rule Output

Python Script

P4 Switch

Entries

1 2

Fig. 6. Automation of IoT device fingerprinting.

way of Linux network namespaces. These client machines were responsible

for generating traffic towards the target server. The artifacts serving as the

experimental results were extracted by the switch via P4 and polled by the

controller for analysis.

5.2. DDoS Detection Results

UDP amplification. For this scenario, traffic utilizing two common pro-

tocols leveraged by adversaries, DNS and NTP, were transmitted to Client 4

which was configured to emulate a resolver to perform the reflection against

the target server. The requests it served were spoofed to the server’s IP, and

it responded with an amplification factor consistent with.107 The maximum

allowable UDP bandwidth was set to 300 Mbps, and the hping3 Linux tool

was used to produce the traffic from the respective client machines. As

depicted in Fig. 7, Client 1 and Client 2 transmitted benign DNS and NTP

traffic, respectively, at approximately 714 datagrams/sec to the server to

establish the baseline rates measured by the switch. To alternatively repre-

sent a network environment entertaining a variety of UDP protocols that do

31

May 13, 2021 15:32 ws-rv9x6 Book Title main page 32

Internet

Controller

P4 Programmable
Switch

Server
Client 6

Client 5

Client 4

Client 3

Client 2 Client 1

Attack Traffic:
 UDP:
 SYN:
 Slow DDOS:

Fig. 7. The topology of the DDoS network forensics evaluation environment

not promote amplification, Client 3 produced such legitimate traffic toward

the server at a rate of 2,856 datagrams/sec. After an arbitrary 10 seconds

that passed for baseline establishment, Client 5 began flooding Client 4

with spoofed DNS traffic as shown at second 1 in Table 2. Note that by

second 2 of Table 2, while the available DNS throughput had been fully

consumed, neither NTP nor any of the other UDP protocols were affected

by the attack. Moreover, these unaffected protocols could increase through-

put unimpeded amid the DNS amplification attack. In a similar fashion,

Client 6 launched a concurrent amplification attack at second 3 of the use

case utilizing NTP. As shown in Table 2, the remaining UDP protocols

traversed the network unimpeded. In fact, they encountered no latency or

packet drops while the network was under the aforementioned two ampli-

fication attacks simultaneously, and were able to effectively double their

transmission rates collectively to 5712 datagrams/sec towards the server

unaffected, which was the maximum amount of bandwidth allotted during

the baseline establishment.

SYN Flooding. For the SYN flooding scenario, a SYN queue size of

1024 was assumed and hping3 was again leveraged for traffic generation.

32

May 13, 2021 15:32 ws-rv9x6 Book Title main page 33

Protocols # Packets per Second Avg Bounds

NTP Avail. 553 562 557 0 0
1252

NTP Utilized 698 688 694 1251 1254

DNS Avail. 557 0 0 0 0
1254

DNS Utilized 693 1257 1254 1254 1254

Misc. Avail. 2068 2053 2067 2094 2029
4626

Misc. Utilized 2582 2547 2582 2555 2554

1s 2s 3s 4s 5s

Table 2. UDP Amplification attack mitigation results

Amid the arbitrary baseline establishment period of 10 seconds, Clients

1 through 5 each made 600 SYN requests per second to the server with

subsequent ACKs. At second 0 of Fig. 8a, Client 6 began transmitting

malicious SYN requests peaking at approximately 2000 packets/sec. With

the six client machines in Fig. 7 utilizing the same OS environment, their

configurations were modified to mimic the diversity in real-world settings

in order to effectively evaluate the proposed approach’s signature attri-

bution mechanism. A binary classification of the transmitted traffic was

conducted by the switch to perform the evaluation, with the negative class

encompassing malicious traffic and the positive class pertaining to that with

legitimate intent. In turn, the metrics of true positives (TP), false nega-

tives (FN), true negatives (TN), and false positives (FP) were leveraged

to obtain the specificity = TN/(TN+FP), precision = TP/(TP+FP), and

accuracy = (TP+TN)/(TP+TN+FP+FN) of the results, as shown in Fig. 8a.

The dip in performance peaked at approximately the 0.25 second mark.

Note that this 0.25 second window needed to observe the signature devia-

tion is proportional to the traffic rate deviation from the dynamic threshold.

That being said, a flawless performance was given by all metrics by 0.5 sec-

onds. Additionally, no latency was observed in the services of legitimate

SYN requests throughout the attack, and the SYN queue never exceeded

its conservative size of 1024 set forth for evaluation purposes. In fact, the

occupancy of the SYN queue only increased by roughly 13% due to the at-

tack traffic. Additionally, it should be noted that this experiment’s artifacts

extracted by the switch at line rate were polled by the controller at arbi-

trary 0.25 second intervals for convenience, and thus the aforementioned

0.5 second interval in this case is an upper bound of a complete mitigation.

33

May 13, 2021 15:32 ws-rv9x6 Book Title main page 34

Slow DDoS. To better put the scheme’s full capabilities to the test, the

maximum number of clients that the server can entertain concurrently was

set to a conservative 256, which thereby necessitates a smaller margin for

error. To emulate realistic TCP traffic interarrival times, the transmission

rates employed for this evaluation scenario were typical fast transmissions

(tb fast), slower traffic originating from sparsely-connected regions (tb slow),

and the lengthier interarrival times of slow DDoS (tm).

Specifically, the aforementioned rates are defined as rational num-

bers Q and fall within the ranges tb fast ∈ Q(0.00 < tb fast ≤ 1.00),

tb slow ∈ Q(1.00 < tb slow ≤ 2.50), and tm ∈ Q(1.75 < tm ≤ 5.00). Note

the existence of Sintersect = {tintersect | tintersect = tb slow ∧ tintersect = tm}
which further challenges the performance of the proposed approach given

|Sintersect| is much greater than would be exhibited in a real-world set-

ting. Once more harnessing hping3 for traffic generation and following

0.0 0.2 0.4 0.6 0.8 1.0
Seconds

0

20

40

60

80

100

Pe
rc

en
ta

ge

Precision
Specificity
Accuracy
Syn Queue Size

(a) Syn Flood

0 2 4 6 8
Seconds

0

20

40

60

80

100

Pe
rc

en
ta

ge

Precision
Specificity
Accuracy
Max Clients

(b) Slow DDoS

Fig. 8. SYN flooding and Slow DDoS mitigation results.

the blueprint laid out in Fig. 7, 50 connections were each established by

Clients 1 through 3 with the server, which resulted in 58.59% of the it’s

connection limit being occupied, as depicted at second 1 of Fig. 8b. Fol-

lowing this first wave of transmissions, 50 additional threads were then

consumed by Client 4 with interarrival times encompassed by tb slow, as

given by 78.13% of that available shown at second 3 of Fig. 8b. At ap-

proximately second 4, Clients 5 and 6 then began generating slow DDoS

traffic leveraging the interarrival times encapsulated by tm with the aim of

overtaking 128 connections each.

The malicious requests resulted in 22.27% of the server’s maximum num-

ber of connections initially being exhausted at second 5 by the attack, as

34

May 13, 2021 15:32 ws-rv9x6 Book Title main page 35

displayed in Fig. 8b, and ultimately increased to 24.61% two seconds later.

At this point, 193, or 75.39% of the malicious sources were successfully fin-

gerprinted and subsequently denied by the switch. Furthermore, the switch

dropped 11 more slow DDoS connections by second 10, which was in fact

the dynamic value calculated for number of legitimate requests the switch

can expect to receive consecutively (i.e., estav) per time window W in this

use case. Ultimately, the amount of the legitimate sessions that did not

lose service never extended below 96.5%, and it only took two seconds from

session exhaustion to open up estav connections for new users; thus, the au-

tomatic retransmissions of the 3.5% (7) of benign clients that temporarily

lost their connections would have granted them service again with negligible

latency.

5.3. IoT Fingerprinting Assessment

5.3.1. Dataset Selection

With forensic investigations necessitating fine-grained artifact extraction,

this use case should not only be evaluated on its binary classification of

IoT versus non-IoT, but it ability to fingerprint the specific device itself.

To perform this evaluation strategy, the network traffic captures taken by

Sivanathan et al.24 were instrumented for training and testing, given its

variety of encapsulated devices. Specifically, the devices and the amount

of packets each utilized for training are listed in Table 3. In addition,

the proposed approach was trained to fingerprint the source devices using

artifacts from a single TCP packet. Consequently, note that for the in-

terarrival times i corresponding to a specific source device d and the time

taken for fingerprinting a device tfingerprint, the source to output a given

packet tsource, and the switch to process a given packet tswitch, approaches

necessitating the analysis of 5 consecutive packets for fingerprinting devices

would require time tfingerprintd =
∑4

x=1(idx
+ tsourcex + tswitchx

), versus

tfingerprintd = tswitchx
for the proposed use case.

5.3.2. Execution

To arrive at the PART model, the first 50,000 packets associated with a

given device in Table 3 were extracted until 1 million packets were reached.

The associated IP and TCP headers of the aforesaid packets were subse-

quently placed in a CSV file for training of the PART model via the Weka

tool.108 The resultant 851 rules were then written to a text file that was

35

May 13, 2021 15:32 ws-rv9x6 Book Title main page 36

parsed by the Python script elaborated upon in Alg. 2, which resided on

the controller for table entry population. Subsequently, another 1 million

packets were transmitted through the P4-programmed switch by way of

tcpreplay.

Index Device Name #Packets Type

a SmartThings 50,000 IoT

b AmazonEcho 50,000 IoT

c NetatmoWelcome 50,000 IoT

d TP-LinkDayNightCloudCamera 50,000 IoT

e SamsungSmartCam 50,000 IoT

f Dropcam 50,000 IoT

g InsteonCamera 50,000 IoT

h WithingsSmartBabyMonitor 50,000 IoT

i BelkinWemoSwitch 50,000 IoT

j TP-LinkSmartPlug 15,301 IoT

k iHome 22,820 IoT

l BelkinWemoMotionSensor 50,000 IoT

m NESTProtectSmokeAlarm 1,430 IoT

n NetatmoWeatherStation 16,760 IoT

o WithingsSmartScale 1,923 IoT

p BlipcareBloodPressureMeter 90 IoT

q WithingsAuraSmartSleepSensor 50,000 IoT

r LightBulbsLiFXSmartBulb 26,523 IoT

s TribySpeaker 49,401 IoT

t PIX-StarPhotoFrame 16,228 IoT

u HPPrinter 38,596 IoT

v SamsungGalaxyTablet 50,000 NIoT

w NestDropcam 31,818 IoT

x Windows Laptop 50,000 NIoT

y MacBook 50,000 NIoT

z AndroidPhone 20,156 NIoT

aa Iphone 8,954 NIoT

ab TPLinkRouterBridgeLAN 50,000 NIoT

Table 3. IoT and NIoT devices in the dataset

36

May 13, 2021 15:32 ws-rv9x6 Book Title main page 37

5.3.3. Results

Every fingerprint the switch made was immediately pushed to the controller

in order to aggregate the results, which are visualized in the confusion

matrix heatmap depicted in Fig. 9.

a c e g i k m o q s u w y aa

a
c

e
g

i
k

m
o

q
s

u
w

y
aa 0

10000

20000

30000

40000

50000

Fig. 9. Confusion matrix of the IoT fingerprinting results

By taking into account the indices of the devices in Table 3 and their cor-

responding classification rate, the highest misclassification rate was given

by the Android phone of approximately 8.886%, with roughly 8.499% of its

records being wrongly fingerprinted as the Samsung Galaxy tablet. Simi-

larly, the Samsung Galaxy tablet had the second highest misclassification

rate of precisely 4.16% with exactly 4.072% of its packets being finger-

printed as the Android phone. Additionally, it can be observed in Fig. 9

that the devices associated with higher misclassification rates map to those

with less training samples in 3. As a result, this suggests that per-device

misclassification rates can be reduced merely by incorporating more sam-

ples for these devices. The overall accuracy of the proposed approach is

37

May 13, 2021 15:32 ws-rv9x6 Book Title main page 38

portrayed in Table 4. As shown, approximately 99.581% and 0.419% of the

1 million packets were correctly and incorrectly fingerprinted as being IoT

devices, respectively.

IoT Non-IoT Total

Correct 99.9668 % 98.2825 % 99.5809 %

Incorrect 0.0332 % 1.7175 % 0.4191 %

Total 770,890 229,110 1,000,000

Table 4. The accuracy of the proposed IoT fingerprinting approach.

6. Conclusion and Future Directions

Network forensics has long been used for fingerprinting network events and

extracting important artifacts for investigation purposes. Nevertheless, tra-

ditional forensic procedures will continue to suffer from latency and poor

incident response as long as they fail to keep pace with the current tech-

nology trends. To this end, we proposed the transformation of network

forensic procedures into that functioning at line rate by leveraging the new-

found programmable switch technology. In turn, we presented two use cases

applicable to major areas of concern within the network forensic commu-

nity. The first use case remediates DDoS attacks by employing dynamic

thresholds from line-rate artifact extraction offered by the switch to infer

contemporary DDoS in real time. The empirical results confirm that the

approach efficiently mitigates both UDP amplification and SYN flood at-

tacks, and significantly reduces the remediation time of slow DDoS. The

second use case facilitates forensic investigations connected to the vulner-

able IoT paradigm via employing a rule-based PART learning algorithm

on the switch in order to accurately fingerprint the origin device from a

single TCP packet, at line rate. Further, the IoT fingerprinting mechanism

was automated to translate the output of rule-based learning algorithms to

P4 programs. The results show that the approach can fingerprint devices

with 99% accuracy. We are optimistic that the proposed approaches will

promote the utilization of programmable switches in a range of network

forensics procedure, in addition to that presented. Moreover, we anticipate

our procedure for automating the integration of rule-based classifiers into

the data plane will inspire a number of other switch-based ML advance-

38

May 13, 2021 15:32 ws-rv9x6 Book Title main page 39

ments within the forensics community.

For future work, both use cases will be deployed on actual hardware

switches; while BMv2 has been widely utilized for P4 development, it

can not offer the precise resource utilization assessments and fine-grained

nanosecond-level measurements that a hardware switch can. Secondly, ex-

ploring further avenues to compact ML classifier output to P4 code would

facilitate additional advancements within both the network forensic and P4

communities. To this effect, subsequent endeavors will explore the integra-

tion of other ML algorithms within programmable data planes.

7. Acknowledgment

This material is based on research sponsored by the Department of Home-

land Security (DHS), United States Secret Service, National Computer

Forensics Institute (NCFI) via contract number 70US0920D70090004.

References

1. C. Fachkha, E. Bou-Harb, and M. Debbabi. Towards a forecasting model
for distributed denial of service activities. In 2013 IEEE 12th International
Symposium on Network Computing and Applications, pp. 110–117 (2013).

2. E. Bou-Harb, M. Debbabi, and C. Assi, Cyber scanning: a comprehensive
survey, Ieee communications surveys & tutorials. 16(3), 1496–1519 (2013).

3. E. Bou-Harb, W. Lucia, N. Forti, S. Weerakkody, N. Ghani, and B. Sinopoli,
Cyber meets control: A novel federated approach for resilient cps leveraging
real cyber threat intelligence, IEEE Communications Magazine. 55(5), 198–
204 (2017).

4. M. Husák, J. Komárková, E. Bou-Harb, and P. Čeleda, Survey of attack
projection, prediction, and forecasting in cyber security, IEEE Communi-
cations Surveys & Tutorials. 21(1), 640–660 (2018).

5. Interpol. Cybercrime: Covid-
19 impact. URL https://www.interpol.int/en/content/download/15526/
file/COVID-19CybercrimeAnalysisReport-August2020.pdf (Aug, 2020).

6. S. Khan, A. Gani, A. W. A. Wahab, M. Shiraz, and I. Ahmad, Network
forensics: Review, taxonomy, and open challenges, Journal of Network and
Computer Applications. 66, 214–235 (2016).

7. K. Kaur, S. Garg, G. Kaddoum, E. Bou-Harb, and K.-K. R. Choo, A big
data-enabled consolidated framework for energy efficient software defined
data centers in iot setups, IEEE Transactions on Industrial Informatics. 16
(4), 2687–2697 (2019).

8. S. Ranger. Github hit with the largest ddos attack ever seen (2018).
9. S. Ikeda. Iot-based ddos attacks are growing and making use of common

vulnerabilities. URL https://www.cpomagazine.com/cyber-security/iot-

39

https://www.interpol.int/en/content/download/15526/file/COVID-19 Cybercrime Analysis Report- August 2020.pdf
https://www.interpol.int/en/content/download/15526/file/COVID-19 Cybercrime Analysis Report- August 2020.pdf
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/

May 13, 2021 15:32 ws-rv9x6 Book Title main page 40

based-ddos-attacks-are-growing-and-making-use-of-common-

vulnerabilities/ (Apr, 2020).
10. S. Soltan, P. Mittal, and H. V. Poor. Blackiot: Iot botnet of high wattage

devices can disrupt the power grid. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 15–32 (2018).

11. C. Fachkha, E. Bou-Harb, and M. Debbabi. Fingerprinting internet dns
amplification ddos activities. In 2014 6th International Conference on New
Technologies, Mobility and Security (NTMS), pp. 1–5 (2014).

12. C. Fachkha, E. Bou-Harb, A. Keliris, N. D. Memon, and M. Ahamad.
Internet-scale probing of cps: Inference, characterization and orchestration
analysis. In NDSS (2017).

13. T. Enderle and U. Bauknecht. Modeling dynamic traffic demand behavior in
telecommunication networks. In Photonic Networks; 19th ITG-Symposium,
pp. 1–8 (2018).

14. J. Crichigno, E. Bou-Harb, and N. Ghani, A comprehensive tutorial on
science dmz, IEEE Communications Surveys & Tutorials. 21(2), 2041–2078
(2018).

15. N. McKeown and J. Rexford. Clarifying the differences between p4
and openflow. URL https://p4.org/p4/clarifying-the-differences-
between-p4-and-openflow.html (May, 2016).

16. K. Friday, E. Kfoury, E. Bou-Harb, and J. Crichigno. Towards a unified
in-network ddos detection and mitigation strategy. In 2020 6th IEEE Con-
ference on Network Softwarization (NetSoft), pp. 218–226 (2020).

17. p4lang/behavioral-model. URL https://github.com/p4lang/behavioral-
model .

18. E. Bou-Harb, M. Debbabi, and C. Assi. Behavioral analytics for infer-
ring large-scale orchestrated probing events. In 2014 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pp. 506–
511 (2014).

19. E. Bou-Harb, M. Debbabi, and C. Assi, A novel cyber security capabil-
ity: Inferring internet-scale infections by correlating malware and probing
activities, Computer Networks. 94, 327–343 (2016).

20. F. Shaikh, E. Bou-Harb, N. Neshenko, A. P. Wright, and N. Ghani, In-
ternet of malicious things: Correlating active and passive measurements
for inferring and characterizing internet-scale unsolicited iot devices, IEEE
Communications Magazine. 56(9), 170–177 (2018).

21. S. Torabi, E. Bou-Harb, C. Assi, M. Galluscio, A. Boukhtouta, and M. Deb-
babi. Inferring, characterizing, and investigating internet-scale malicious iot
device activities: A network telescope perspective. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 562–573 (2018).

22. N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, De-
mystifying iot security: an exhaustive survey on iot vulnerabilities and a
first empirical look on internet-scale iot exploitations, IEEE Communica-
tions Surveys & Tutorials. 21(3), 2702–2733 (2019).

23. M. S. Pour, E. Bou-Harb, K. Varma, N. Neshenko, D. A. Pados, and K.-

40

https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://p4.org/p4/clarifying-the-differences-between-p4-and-openflow.html
https://p4.org/p4/clarifying-the-differences-between-p4-and-openflow.html
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model

May 13, 2021 15:32 ws-rv9x6 Book Title main page 41

K. R. Choo, Comprehending the iot cyber threat landscape: A data di-
mensionality reduction technique to infer and characterize internet-scale iot
probing campaigns, Digital Investigation. 28, S40–S49 (2019).

24. A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, Classifying iot devices in smart environ-
ments using network traffic characteristics, IEEE Transactions on Mobile
Computing. 18(8), 1745–1759 (2018).

25. A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis. In-network
computation is a dumb idea whose time has come. In Proceedings of the
16th ACM Workshop on Hot Topics in Networks, pp. 150–156 (2017).

26. F. Yang, Z. Wang, X. Ma, G. Yuan, and X. An, Switchagg: A further step
towards in-network computation, arXiv preprint arXiv:1904.04024 (2019).

27. Sapio and et al., Scaling distributed machine learning with in-network ag-
gregation, arXiv preprint arXiv:1903.06701 (2019).

28. D. Sanvito, G. Siracusano, and R. Bifulco. Can the network be the ai ac-
celerator? In Proceedings of the 2018 Morning Workshop on In-Network
Computing, pp. 20–25 (2018).

29. Z. Xiong and N. Zilberman. Do switches dream of machine learning? toward
in-network classification. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, pp. 25–33 (2019).

30. S. Mukkamala and A. H. Sung, Identifying significant features for network
forensic analysis using artificial intelligent techniques, International Journal
of digital evidence. 1(4), 1–17 (2003).

31. K. Sindhu and B. Meshram, Digital forensics and cyber crime datamining
(2012).

32. N. Koroniotis, N. Moustafa, E. Sitnikova, and J. Slay. Towards developing
network forensic mechanism for botnet activities in the iot based on machine
learning techniques. In International Conference on Mobile Networks and
Management, pp. 30–44 (2017).

33. N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, Towards the
development of realistic botnet dataset in the internet of things for network
forensic analytics: Bot-iot dataset, Future Generation Computer Systems.
100, 779–796 (2019).

34. D. Oreški and D. Andročec. Genetic algorithm and artificial neural net-
work for network forensic analytics. In 2020 43rd International Convention
on Information, Communication and Electronic Technology (MIPRO), pp.
1200–1205 .

35. A. Bijalwan, Botnet forensic analysis using machine learning, Security and
Communication Networks. 2020 (2020).

36. Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One sketch
to rule them all: Rethinking network flow monitoring with univmon. In
Proceedings of the 2016 ACM SIGCOMM Conference, pp. 101–114 (2016).

37. V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford. Heavy-hitter detection entirely in the data plane. In Proceedings
of the Symposium on SDN Research, pp. 164–176 (2017).

38. J. Xing, W. Wu, and A. Chen. Architecting programmable data plane de-

41

May 13, 2021 15:32 ws-rv9x6 Book Title main page 42

fenses into the network with fastflex. In Proceedings of the 18th ACM Work-
shop on Hot Topics in Networks, pp. 161–169 (2019).

39. Kučera and et al. Enabling event-triggered data plane monitoring. In Pro-
ceedings of the Symposium on SDN Research, pp. 14–26 (2020).

40. Zhang and et al. Poseidon: Mitigating volumetric ddos attacks with pro-
grammable switches. In Proceedings of NDSS (2020).

41. Lapolli and et al. Offloading real-time ddos attack detection to pro-
grammable data planes. In 2019 IFIP/IEEE Symposium on Integrated Net-
work and Service Management (IM), pp. 19–27 (2019).

42. J. Ioannidis and S. M. Bellovin, Implementing pushback: Router-based de-
fense against ddos attacks (2002).

43. A. Febro, H. Xiao, and J. Spring. Distributed sip ddos defense with
p4. In 2019 IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1–8 (2019).

44. Scholz and et al., Me love (syn-) cookies: Syn flood mitigation in pro-
grammable data planes, arXiv preprint arXiv:2003.03221 (2020).

45. K. S. Hoon, K. C. Yeo, S. Azam, B. Shunmugam, and F. De Boer. Critical
review of machine learning approaches to apply big data analytics in ddos
forensics. In 2018 International Conference on Computer Communication
and Informatics (ICCCI), pp. 1–5 (2018).

46. A. V. Kachavimath, S. V. Nazare, and S. S. Akki. Distributed denial of ser-
vice attack detection using näıve bayes and k-nearest neighbor for network
forensics. In 2020 2nd International Conference on Innovative Mechanisms
for Industry Applications (ICIMIA), pp. 711–717 (2020).

47. A. Fadlil, I. Riadi, and S. Aji, Review of detection ddos attack detection
using naive bayes classifier for network forensics, Bulletin of Electrical En-
gineering and Informatics. 6(2), 140–148 (2017).

48. A. Yudhana, I. Riadi, and F. Ridho, Ddos classification using neural network
and näıve bayes methods for network forensics, International Journal of
Advanced Computer Science and Applications. 9(11), 177–183 (2018).

49. M. A. Zulkifli and U. Dahlan, Live forensics method for analysis denial of
service (dos) attack on routerboard, Int. J. Comput. Appl. 180(35), 23–30
(2018).

50. R. Khattak, S. Bano, S. Hussain, and Z. Anwar. Dofur: Ddos forensics
using mapreduce. In 2011 Frontiers of Information Technology, pp. 117–
120 (2011).

51. R. Khattak and Z. Anwar. D3tac: Utilizing distributed computing for ddos
attack traffic analysis on the cloud. In 2016 19th International Multi-Topic
Conference (INMIC), pp. 1–6 (2016).

52. A. Aydeger, N. Saputro, and K. Akkaya, A moving target defense and
network forensics framework for isp networks using sdn and nfv, Future
Generation Computer Systems. 94, 496–509 (2019).

53. K. Wang, M. Du, Y. Sun, A. Vinel, and Y. Zhang, Attack detection and
distributed forensics in machine-to-machine networks, IEEE Network. 30
(6), 49–55 (2016).

54. V. Timcenko and M. Stojanovic. Application of forensic analysis for intru-

42

May 13, 2021 15:32 ws-rv9x6 Book Title main page 43

sion detection against ddos attacks in mobile ad hoc networks. In Proceed-
ings of the 1st WSEAS Int. Conf. on Information Technology and Computer
Networks (ITCN’12), Vienna (2012).

55. B. Cusack, R. Lutui, and R. Khaleghparast. Detecting slow ddos attacks
on mobile devices. In The 27th Australasian Conference on Information
Systems (2016).

56. S.-Y. Wang, C.-M. Wu, Y.-B. Lin, and C.-C. Huang, High-speed data-plane
packet aggregation and disaggregation by p4 switches, Journal of Network
and Computer Applications. 142, 98–110 (2019).

57. S.-Y. Wang, J.-Y. Li, and Y.-B. Lin, Aggregating and disaggregating packets
with various sizes of payload in p4 switches at 100 gbps line rate, Journal
of Network and Computer Applications. p. 102676 (2020).

58. Y.-B. Lin, S.-Y. Wang, C.-C. Huang, and C.-M. Wu, The sdn approach for
the aggregation/disaggregation of sensor data, Sensors. 18(7), 2025 (2018).

59. M. Uddin, S. Mukherjee, H. Chang, and T. Lakshman. Sdn-based service
automation for iot. In 2017 IEEE 25th International Conference on Network
Protocols (ICNP), pp. 1–10 (2017).

60. M. Uddin, S. Mukherjee, H. Chang, and T. Lakshman, Sdn-based multi-
protocol edge switching for iot service automation, IEEE Journal on Se-
lected Areas in Communications. 36(12), 2775–2786 (2018).

61. Meidan and et al. Profiliot: a machine learning approach for iot device iden-
tification based on network traffic analysis. In Proceedings of the symposium
on applied computing, pp. 506–509 (2017).

62. K. Yang, Q. Li, and L. Sun, Towards automatic fingerprinting of iot devices
in the cyberspace, Computer Networks. 148, 318–327 (2019).

63. A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, Managing iot cyber-
security using programmable telemetry and machine learning, IEEE Trans-
actions on Network and Service Management. 17(1), 60–74 (2020).

64. Thangavelu and et al., Deft: A distributed iot fingerprinting technique,
IEEE Internet of Things Journal. 6(1), 940–952 (2018).

65. X. Feng, Q. Li, H. Wang, and L. Sun. Acquisitional rule-based engine for
discovering internet-of-things devices. In 27th {USENIX} Security Sympo-
sium ({USENIX} Security 18), pp. 327–341 (2018).

66. Perdisci and et al., Iotfinder: Efficient large-scale identification of iot devices
via passive dns traffic analysis .

67. A. J. Pinheiro, J. d. M. Bezerra, C. A. Burgardt, and D. R. Campelo,
Identifying iot devices and events based on packet length from encrypted
traffic, Computer Communications. 144, 8–17 (2019).

68. G. Siracusano and R. Bifulco, In-network neural networks, arXiv preprint
arXiv:1801.05731 (2018).

69. A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: Scaling flow management for high-performance net-
works. In Proceedings of the ACM SIGCOMM 2011 conference, pp. 254–265
(2011).

70. C. Estan and G. Varghese. New directions in traffic measurement and ac-
counting. In Proceedings of the 2002 conference on Applications, technolo-

43

May 13, 2021 15:32 ws-rv9x6 Book Title main page 44

gies, architectures, and protocols for computer communications, pp. 323–336
(2002).

71. L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic aggre-
gates on commodity switches. In Hot-ICE (2011).

72. N. Duffield, C. Lund, and M. Thorup. Charging from sampled network
usage. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, pp. 245–256 (2001).

73. T. Benson, A. Anand, A. Akella, and M. Zhang. Microte: Fine grained traf-
fic engineering for data centers. In Proceedings of the Seventh COnference
on emerging Networking EXperiments and Technologies, pp. 1–12 (2011).

74. A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True,
Deriving traffic demands for operational ip networks: Methodology and
experience, IEEE/ACM Transactions On Networking. 9(3), 265–279 (2001).

75. S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New stream-
ing algorithms for fast detection of superspreaders. Technical report,
CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COM-
PUTER SCIENCE (2004).

76. Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang. Worm ori-
gin identification using random moonwalks. In 2005 IEEE Symposium on
Security and Privacy (S&P’05), pp. 242–256 (2005).

77. D. Ibrahim, An overview of soft computing, Procedia Computer Science.
102, 34–38 (2016).

78. S. Khan, A. Gani, A. W. A. Wahab, A. Abdelaziz, K. Ko, M. K. Khan,
and M. Guizani, Software-defined network forensics: Motivation, potential
locations, requirements, and challenges, IEEE Network. 30(6), 6–13 (2016).

79. Y. Mi and A. Wang. Ml-pushback: Machine learning based pushback de-
fense against ddos. In Proceedings of the 15th International Conference on
emerging Networking EXperiments and Technologies, pp. 80–81 (2019).

80. E. F. Kfoury, J. Crichigno, and E. Bou-Harb. Offloading media traffic to
programmable data plane switches. In ICC 2020-2020 IEEE International
Conference on Communications (ICC), pp. 1–7 (2020).

81. D. Anstee, Preparing for tomorrow’s threat landscape, Network Security.
2015(8), 18–20 (2015).

82. Wireshark. URL https://www.wireshark.org/ .
83. M. I. Mazdadi, I. Riadi, and A. Luthfi, Live forensics on routeros using api

services to investigate network attacks, International Journal of Computer
Science and Information Security (IJCSIS). 15(2) (2017).

84. E. Cambiaso, G. Papaleo, and M. Aiello. Taxonomy of slow dos attacks
to web applications. In International Conference on Security in Computer
Networks and Distributed Systems, pp. 195–204 (2012).

85. McKeown and et al., Openflow: enabling innovation in campus networks,
ACM SIGCOMM Computer Communication Review. 38(2), 69–74 (2008).

86. Nygren and et al., Openflow switch specification version 1.5. 1, Open Net-
working Foundation, Tech. Rep (2015).

87. P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., P4: Program-

44

https://www.wireshark.org/

May 13, 2021 15:32 ws-rv9x6 Book Title main page 45

ming protocol-independent packet processors, ACM SIGCOMM Computer
Communication Review. 44(3), 87–95 (2014).

88. B. Networks. Tofino 2: Barefoot. URL
https://www.barefootnetworks.com/products/brief-tofino-2/ .

89. Cisco annual internet report - cisco annual inter-
net report (2018–2023) white paper. URL https://www.cisco.com/c/en/
us/solutions/collateral/executive-perspectives/annual-internet-

report/white-paper-c11-741490.html (Mar, 2020).
90. K. Hong, Y. Kim, H. Choi, and J. Park, Sdn-assisted slow http ddos attack

defense method, IEEE Communications Letters. 22(4), 688–691 (2017).
91. DanielRTeixeira. R.u.d.y. URL https://github.com/DanielRTeixeira/

R.U.D.Y. (Dec, 2016).
92. Gkbrk. Slowloris. URL

https://github.com/gkbrk/slowloris/blob/master/slowloris.py .
93. K. Scarfone and P. Hoffman, Guidelines on firewalls and firewall policy,

NIST Special Publication. 800, 41 (2009).
94. Iana. URL https://www.iana.org/assignments/icmp-parameters/icmp-

parameters.xhtml .
95. Z. Trabelsi, S. Zeidan, and K. Hayawi, Denial of firewalling attacks (dof):

The case study of the emerging blacknurse attack, IEEE Access. 7, 61596–
61609 (2019).

96. C. Fachkha, E. Bou-Harb, and M. Debbabi, Inferring distributed reflection
denial of service attacks from darknet, Computer Communications. 62,
59–71 (2015).

97. C. Morales. Netscout arbor confirms 1.7 tbps ddos attack; the terabit attack
era is upon us.
URL https://www.netscout.com/blog/asert/netscout-arbor-confirms-
17-tbps-ddos-attack-terabit-attack-era (Mar, 2018).

98. C. Cimpanu. Aws said it mitigated a 2.3 tbps ddos attack, the largest
ever. URL https://www.zdnet.com/article/aws-said-it-mitigated-a-
2-3-tbps-ddos-attack-the-largest-ever/ (Jun, 2020).

99. S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard: Scalable and
vigilant switch flow management in software-defined networks. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications
security, pp. 413–424 (2013).

100. M. S. Pour, A. Mangino, K. Friday, M. Rathbun, E. Bou-Harb, F. Iqbal,
K. Shaban, and A. Erradi. Data-driven curation, learning and analysis for
inferring evolving iot botnets in the wild. In Proceedings of the 14th In-
ternational Conference on Availability, Reliability and Security, pp. 1–10
(2019).

101. M. S. Pour, A. Mangino, K. Friday, M. Rathbun, E. Bou-Harb, F. Iqbal,
S. Samtani, J. Crichigno, and N. Ghani, On data-driven curation, learning,
and analysis for inferring evolving internet-of-things (iot) botnets in the
wild, Computers & Security. 91, 101707 (2020).

102. B. Networks. Copyright © 2017 -barefoot networksprogrammable data
plane at terabit speeds. URL https://p4.org/assets/p4_d2_2017_

45

https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://github.com/DanielRTeixeira/R.U.D.Y.
https://github.com/DanielRTeixeira/R.U.D.Y.
https://github.com/gkbrk/slowloris/blob/master/slowloris.py
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era
https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/
https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf

May 13, 2021 15:32 ws-rv9x6 Book Title main page 46

programmable_data_plane_at_terabit_speeds.pdf .
103. E. Frank and I. H. Witten, Generating accurate rule sets without global

optimization (1998).
104. J. Quinlan, C4. 5: programs for machine learning. Elsevier (2014).
105. W. W. Cohen. Fast effective rule induction. In Machine learning proceedings

1995, pp. 115–123. Elsevier (1995).
106. N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown. Repro-

ducible network experiments using container-based emulation. In Proceed-
ings of the 8th international conference on Emerging networking experiments
and technologies, pp. 253–264 (2012).

107. M. Kührer, T. Hupperich, C. Rossow, and T. Holz. Exit from hell? reduc-
ing the impact of amplification ddos attacks. In 23rd {USENIX} Security
Symposium ({USENIX} Security 14), pp. 111–125 (2014).

108. Weka. URL https://www.cs.waikato.ac.nz/ml/weka/ .

46

https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://www.cs.waikato.ac.nz/ml/weka/

	1. On Offloading Network Forensic Analytics to Programmable Data Plane Switches
	Kurt Friday
	Elias Bou-Harb
	Jorge Crichigno
	Mark Scanlon
	Nicole Beebe
	Introduction
	Related Literature
	P4-Enabled Analytics
	Traditional Network Forensics

	Background
	A Primer on Programmable Switches
	Motivating Line-Rate Network Forensics

	In-Network Forensic Use Cases
	Assessing DDoS
	Fingerprinting IoT Devices

	Evaluation
	Environmental Setup
	DDoS Detection Results
	IoT Fingerprinting Assessment

	Conclusion and Future Directions
	Acknowledgment
	References

