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A B S T R A C T   

Investigation on smart devices has become an essential subdomain in digital forensics. The inherent diversity and 
complexity of smart devices pose a challenge to the extraction of evidence without physically tampering with it, 
which is often a strict requirement in law enforcement and legal proceedings. Recently, this has led to the 
application of non-intrusive Electromagnetic Side-Channel Analysis (EM-SCA) as an emerging approach to 
extract forensic insights from smart devices. EM-SCA for digital forensics is still in its infancy, and has only been 
tested on a small number of devices so far. Most importantly, the question still remains whether Machine 
Learning (ML) models in EM-SCA are portable across multiple devices to be useful in digital forensics, i.e., cross- 
device portability. This study experimentally explores this aspect of EM-SCA using a wide set of smart devices. The 
experiments using various iPhones and Nordic Semiconductor nRF52-DK devices indicate that the direct 
application of pre-trained ML models across multiple identical devices does not yield optimal outcomes (under 
20 % accuracy in most cases). Subsequent experiments included collecting distinct samples of EM traces from all 
the devices to train new ML models with mixed device data; this also fell short of expectations (still below 20 % 
accuracy). This prompted the adoption of transfer learning techniques, which showed promise for cross-model 
implementations. In particular, for the iPhone 13 and nRF52-DK devices, applying transfer learning tech-
niques resulted in achieving the highest accuracy, with accuracy scores of 98 % and 96 %, respectively. This 
result makes a significant advancement in the application of EM-SCA to digital forensics by enabling the use of 
pre-trained models across identical or similar devices.   

1. Introduction 

The digital forensic investigation of smart devices involves the sys-
tematic analysis of electronic evidence within smartphones, tablets, 
Internet of Things (IoT) devices, and other embedded systems. It aims to 
uncover, preserve, and interpret digital information, including files, 
communications, application data, and system logs, for legal or corpo-
rate investigative purposes (Ghosh et al., 2021). Digital forensics experts 
utilise specific tools and techniques to identify digital footprints, 
reproduce events, and provide insights into user behaviour related to 
criminal activity. Such investigations are crucial in legal proceedings to 
understand the digital interactions of individuals and organisations 

(Alghamdi, 2021). Digital forensics on smart devices protects individual 
rights, aids efficient legal procedure, and strengthens cybersecurity ef-
forts, contributing to a safer and more secure digital environment in a 
world where digital interactions are pervasive (Losavio et al., 2019). 

Smart devices provide a number of difficulties that make collecting 
and analysing digital evidence a challenging task, e.g., encryption, data 
protection, diversity of devices, cloud-based data, data volume and 
fragmentation, privacy concerns, rapid technology advancement, anti- 
forensics techniques, deleted data, legal and jurisdictional hurdles, 
user authentication, real-time data, and data integrity (Hegarty et al., 
2014; Karie and Venter, 2015; Montasari and Hill, 2019). Non-invasive 
techniques in digital forensic investigations refer to methods that do not 
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alter or damage the original digital evidence during the investigation 
process. These techniques are crucial for preserving the integrity of the 
evidence and ensuring that it remains admissible in court. 

In 2019, Sayakkara et al. introduced Electromagnetic Side-Channel 
Analysis (EM-SCA) for the forensic examination of both smartphones 
and IoT devices (Sayakkara et al., 2019a, 2019b). This novel technique 
revolves around the detection and analysis of electromagnetic signals 
emitted by the internal components of these devices during their oper-
ational activities. The EM-SCA technique intensively examines the un-
intentional electromagnetic radiation emissions generated by 
components, e.g., processors and memory, in an effort to obtain 
important insight about the operations, interactions, and potential se-
curity flaws of the devices (Sayakkara, 2020). The non-invasive nature 
of this technique enables the examination of devices without changing 
their original state, preserving the integrity of the evidence. The EM-SCA 
approach holds significant promise for enhancing digital forensics in-
vestigations, as it provides a fresh perspective to uncovering hidden 
information and potential threats of smartphones and IoT devices, while 
adhering to strict non-invasive principles (Sayakkara and Le-Khac, 
2021a, 2021b). 

There is an important limitation in EM-SCA that limits its applica-
bility to real-world investigations. The proposed model is tested using 
distinct devices, including four different smartphones and four unique 
IoT devices (Sayakkara and Le-Khac, 2021b). However, the existing 
studies fail to demonstrate that an ML model designed to acquire 
forensic insights using EM-SCA can be applied to other devices with 
comparable performance. This situation prompts inquiries about the 
adaptability of a trained ML model across many devices — even those of 
the same make and model. 

ML models used in EM-SCA are closely linked to the devices that 
have been used to create the training dataset. It is possible that a trained 
model may not accurately extract forensic insights from a device, even if 
the device is of the same make and model. Additionally, Sayakkara 
et al.’s ML model (Sayakkara and Le-Khac, 2021a, 2021b) cannot detect 
and acquire forensic insights from other devices with shared internal 
components. In the recent research (Yasarathna et al., 2023), authors 
identified some limitations of using EM-SCA in the crossed-IoT devices 
context, such as device variability, environmental factors, and data 
collection and processing. They also demonstrated the impact of the 
multi-core architectures of the processors on the accuracy and reliability 
of ML models for EM-SCA. Then, they highlighted the possibility of using 
transfer learning in improving the performance of ML/Deep Leaning 
models used in analysing EM-SCA data. However authors in (Yasarathna 
et al., 2023) have not validated their findings with smart devices with 
complex System-on-Chip (SoC) architectures, in contrast to this work. In 
this work, different models of iPhones, representing smartphones, and 
the Nordic Semiconductor nRF52-DK, representing IoT devices, were 
chosen to study the cross-device portability of the EM-SCA approach. 

In experiments, the number of traces collected for each activity from 
each device played a crucial role in validating the model’s trans-
ferability both within the same device and across identical devices. The 
methodology begins with the utilisation of the Sayakkara et al.’s EM- 
SCA technique to construct bespoke models for each device. Subse-
quently, these pre-trained models were directly applied to identical 
devices to determine the portability of the model across similar-type 
devices. However, the experimental outcomes did not align with the 
anticipated results. Consequently, the pre-trained model was tested on 
different samples of the same device taken at different times. Again, this 
yielded results that did not align with expectations. This also consoli-
dates the findings in (Yasarathna et al., 2023). 

In response to these challenges, the study progressed to the appli-
cation of transfer learning techniques. Specifically, the output layer of 
the pre-trained model was retrained, resulting in a notable enhancement 
in accuracy. This transformation in the research approach proved to be 
significant, directing the study towards a more accurate, cross-device 
portable model implementation. Furthermore, this study is confined to 

conducting experiments solely on identical devices and diverse samples 
of the same devices. 

This paper makes the following contributions.  

⋅ Experimentally investigates the behaviour of ML models used in EM- 
SCA for digital forensics across devices from the same make and 
model for real-world smart devices of complex SoC architectures.  

⋅ Examines the impact of using simple ML-based approaches to train 
models using EM data from a single device to prove that such ap-
proaches do not guarantee the same performance of the model on 
similar or different devices with identical processors.  

⋅ Demonstrates the effectiveness of transfer learning in addressing 
cross-device portability of EM-SCA in investigating on smart and IoT 
devices. 

The rest of this paper is organised as follows. The essential infor-
mation on the background of the field is provided in Section 2, followed 
by the experimental methodology in Section 3. The experiments and 
results of the smartphone and IoT device-based studies are described in 
detail in Section 4. Section 5 provides a detailed discussion on the 
findings, followed by the conclusion in Section 6. 

2. Background 

2.1. Side-channel analysis for digital forensics 

Side-channel analysis is a sophisticated technique that exploits un-
intentional information leakage from electronic devices during their 
operation. This leakage, which includes electromagnetic emissions, 
power consumption patterns, and timing discrepancies, can provide 
valuable insights into a device’s activities, potentially revealing internal 
data including cryptographic keys (Standaert, 2010; Buhan et al., 2022; 
Spreitzer et al., 2017). In digital forensics, side-channel analysis can 
offer a non-invasive approach to inspect devices. This method is 
particularly useful in uncovering information from devices that might be 
locked or encrypted (Chowdhury et al., 2021). Despite its advantages, 
side-channel analysis requires specialised knowledge and tools due to its 
complexity. It has applications in various areas, including cryptography, 
cybersecurity, and reverse engineering (Lavaud et al., 2021; Hossain 
et al., 2018). 

EM-SCA presents a promising opportunity for acquiring forensic in-
sights from electronic devices. This approach capitalises on the unin-
tentional electromagnetic radiation emitted during the operation of the 
devices, which can carry valuable information about the device’s ac-
tivities. Sayakkara et al. demonstrated the applicability of EM-SCA in the 
context of IoT device forensics, which has the capability to provide 
forensic insights beyond what conventional methods can achieve 
(Sayakkara and Le-Khac, 2021b). Furthermore, their work highlights 
how electromagnetic side-channel analysis can be utilised not only for 
forensic purposes, but also to identify vulnerabilities and potential 
attack vectors in IoT devices. This underscores the versatility of EM-SCA 
in both offensive and defensive security contexts (Sayakkara et al., 
2019b, 2020; Sayakkara, 2020; Kar, 2017). 

2.2. The acquisition of EM side-channel radiation 

The electrical components of computing equipment generate EM 
radiation as an effect of internal operations. Both smartphones and IoT 
devices have a variety of internal EM emitting components, including 
processors, RAM, bus lines, network adaptors, video and audio units, 
etc. These interior parts are often associated with a System-on-Chip 
(SoC) that effortlessly generates EM radiation at its system clock fre-
quency. This EM radiation can carry crucial information leaked during 
the operation of internal components. Attackers can exploit this leaked 
information for their own advantage (Sayakkara and Le-Khac, 2021b). 

The EM radiation associated with various software behaviours from 
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IoT devices and smartphones has been identified as a raw source for EM- 
SCA for the acquisition of digital forensic insight (Sayakkara and 
Le-Khac, 2021a, 2021b; Le et al., 2021). Researchers can identify and 
measure the EM radiation produced during software activities by posi-
tioning specialised sensors or probes in close proximity to the device. 
This radiation contains minimal but observable patterns that are related 
to the particular actions and processes taking place within the compo-
nents of a device. These patterns can be analysed and correlated with the 
software activities being performed at the time. 

Software Defined Radios (SDRs) are a specific kind of wireless 
hardware equipment that can capture analogue electromagnetic radia-
tion signals and digitise them to be processed with software tools 
(Sayakkara, 2020; Jondral, 2005). HackRF One SDR is one of such tools 
that has been used to capture EM radiation from IoT devices and 
smartphones (Sayakkara et al., 2018). A H-loop near-field antenna 
attached to a HackRF One SDR has been used to identify the EM radi-
ation of various software behaviours. Usually, the antenna is moved over 
the target device to get closer to the SoC processor - since it is anticipated 
that the SoC would leak crucial information loudest about the internal 
operations of the device. 

Collected EM radiation can also provide insights into the software 
execution on smart devices, revealing information about the type of 
applications being used, the intensity of processing, and even potential 
security vulnerabilities. This approach can be utilised in digital forensics 
to reconstruct a timeline of a device’s activities, aiding in investigations 
to understand the sequence of events leading up to a particular situation. 

2.3. Transfer learning for digital forensics 

Transfer learning has emerged as a prominent trend in the current 
era of artificial intelligence. Transfer learning involves extracting in-
sights from one problem domain and applying these insights to address a 
similar, new problem. Transfer learning strategies enable the sharing of 
knowledge, improving generalisation and overcoming the limitations of 
isolated learning procedures. Pre-trained ML models are particularly 
recommended for the problem of classification. It has the potential to 
use information from a previously trained model when faced with a new 
problem, greatly decreasing the time and effort required to build a new 
model from scratch (Li et al., 2021; Pan and Yang, 2009). 

Transfer learning is experiencing increased adoption, especially in 
comparison to supervised learning, in both commercial and research 
domains (Taylor and Stone, 2009). The notable advantages of transfer 
learning over traditional machine learning methods are evident. Tradi-
tional learning operates in isolation, requiring substantial data volumes 
for accurate learning and classification. In contrast, transfer learning 
leverages knowledge from previously mastered domains, eliminating 
the need for extensive datasets (Bengio et al., 2021). Consequently, 
transfer learning accelerates processing, conserves memory, reduces 
space requirements, and saves power. A notable benefit is that one does 
not need to be a deep learning expert to execute operations; knowledge 
from analogous situations suffices. 

The idea of transfer learning for EM-SCA is a useful and cutting-edge 
method for digital forensic investigations on smart devices. Transfer 
learning makes use of the vast amounts of data and expertise to improve 
the precision and effectiveness of forensic investigation by collecting EM 
traces from specific devices or groups of devices that are similar to those 
in question (Goundar, 2023; Stoyanova et al., 2020). In this context, 
transfer learning makes it easier to apply the knowledge learned from 
one investigation to another, allowing researchers to make use of the 
patterns and signatures present in EM traces. This strategy enables re-
searchers to develop models, algorithms, and approaches that can 
recognise and interpret EM signals more successfully by leveraging data 
from known examples or comparable equipment (Pan and Yang, 2009). 

2.4. Cross-device portability of side-channel analysis 

In the context of digital forensic investigation, the importance of a 
cross-device portable model becomes crucial - especially when smart 
devices are present at crime scenes. Smart devices have become an 
essential part of human interaction and communication in today’s 
interconnected society, making them potential sources of critical evi-
dence in investigative cases. Investigators face a significant hurdle due 
to the diversity of smart devices, which includes different brands, 
models, components, and operating systems. This problem can be solved 
by a cross-device portable model that provides a standardised repre-
sentation of a particular smart device. Such a model can be utilised for 
performing digital forensic analysis on many kinds of smart devices. This 
approach has a multitude of benefits: efficiency, consistency, adapt-
ability, resource optimisation, comprehensive insight, reduced learning 
curve, and legal credibility. 

Performing EM and power side-channel attacks using deep learning 
models has been the focus of the security community in recent years (Yu 
et al., 2021; Cao et al., 2022; Zhang et al., 2020; Das et al., 2019; Danial 
et al., 2021; Golder et al., 2019). The possibility for adopting distinctive 
characteristics, such as the applicability of one device’s knowledge to 
another, regardless of whether they share the same manufacturer or 
belong to completely separate families, is revealed by cross-knowledge, 
and cross-family side-channel attacks respectively (Thapar et al., 2020; 
Thapar et al., 2021). An idea encompasses the transferability of machine 
learning models between various types, which means that regardless of 
the characteristics of each model, the knowledge gained from one model 
might be useful for another model known as cross-model/cross-domain 
side-channel attack (Yu et al., 2021; Bird et al., 2020). In essence, a 
cross-device portable model can streamline and enhance digital forensic 
investigations involving smart devices. It empowers investigators to 
efficiently and consistently extract evidence from a diverse range of 
devices. 

3. Experimental methodology 

This study is carried out using two different avenues in order to 
explore cross-device portability among various smart devices in digital 
forensics investigations. The first avenue involves the dedicated collec-
tion of a diverse range of smartphones, each segmented based on their 
unique features and attributes. In the second avenue, the study broadens 
its focus to include IoT devices. The selected embedded hardware plat-
form is representative of typical IoT devices. The subsequent sections 
provide a detailed explanation of the two avenues. 

3.1. Methodology for EM data acquisition 

This study employs the HackRF One SDR, which has a frequency 
range of 1 MHz–6 GHz, and a maximum sampling rate of 20 MHz 
(Sayakkara and Le-Khac, 2021b). Configuration and data processing use 
the GNU Radio library and its graphical interface, GNU Radio Com-
panion (GRC), for building EM data processing pipeline. The EM radi-
ation under investigation originates from the SoC processor of the 
Device-Under-Test (DUT), and proximity to the SoC during data acqui-
sition improves signal reception. To achieve this, an RF Explorer 
near-field H-loop antenna is connected to the HackRF One device for 
close-proximity data acquisition from the DUT. 

Identifying the optimal location for maximum signal reception in-
volves manually moving the near-field antenna while plotting the 
spectrogram of the received signal at the CPU clock frequency of the 
DUT. The position where the signal is the strongest is fixed for subse-
quent EM trace acquisition, forming the dataset. Although existing 
literature explores tools and algorithms for determining the ideal signal 
reception location (Danial et al., 2020), this study limits the detection of 
optimum position for each considered DUT to manual observation of 
signal strength. 
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The key to obtaining high-quality EM trace data on the HackRF de-
vice lies in determining optimal signal amplification values. Setting 
amplification too low can make it challenging to capture weak EM ra-
diation from a DUT. On the other hand, excessive signal amplification 
may amplify external noise, resulting in a cluttered EM trace file. The 
determination of amplification settings involved empirical experimen-
tation with various configurations, considering signal clarity across 
different devices in the existing work (Sayakkara and Le-Khac, 2021b). 
Hence, in line with the findings from the previous study, the radio fre-
quency power amplifier (RF), the low noise amplifier (IF), and the 
variable-gain amplifier (BB) are consistently configured at 14 dB, 40 dB, 
and 18 dB, respectively, throughout the experiments (Sayakkara and 
Le-Khac, 2021b). 

3.2. Experiments with smartphones 

In order to perform experiments with smartphones, iPhones were 
selected as they have a large user base. The devices were divided ac-
cording to their version, model, processor type, and architecture. 
Table 1 provides an overview of the specifics of the selected devices. The 
system clock frequency was used to calibrate GNU Radio Companion 
(GRC) software to capture EM traces from the location of the SoC of each 
device. 

The following ten activities were conducted on each of the selected 
iPhones to observe and collect EM radiation: calendar-app, camera-photo, 
camera-video, email-app, gallery-app, home-screen, idle, phone-app, sms- 
app, and web-browser-app. EM traces of each activity were recorded from 
each iPhone at its corresponding system clock frequency, as shown in 
Table 1. This process is described in detail in Section 2.2. A HackRF One, 
a computer with the GRC software installed, and a H-loop near-field 
antenna was used to gather EM traces. Fig. 1 shows the hardware 
arrangement of the EM signal acquisition process. The GRC software 
uses a flow graph to construct the parameter configuration for the data 
gathering, as depicted in Fig. 2. Here, the sample rates are defined as the 
number of samples per second, and the system clock frequency of each 
iPhone is allocated to the variable centre frequency. Osmocom Source 
represents attributes of HackRF One device. Frequency Sink and Waterfall 
Sink are used to recognise peak signal and the pattern of EM signals at 
the proper frequency point. In addition, File Sink is used to store the 
traces file in the .cfile format. 

3.3. Experiments with IoT 

The Nordic Semiconductor nRF52-DK development kit was selected 
to represent typical IoT devices. Two identical nRF52-DK devices were 
chosen that contain nRF52832 System-on-Chip (SoC) with a maximum 
system clock frequency of 2.4 GHz. Eight distinct software activities 
were selected to capture and evaluate EM traces: blinky, blinky_freertos, 
blinky_rtc_freertos, blinky_systick, led_softblink, BLINK_new, IDLE_new, and 
Matrix_multiplication_new. Each programme is installed into the chip 
using SEGGER Embedded Studio software. The hardware setup for 
acquiring EM signals from the nRF52-DK devices is shown in Fig. 3. 

The system clock frequency of the nRF52-DK is set as the center 

frequency in the GRC utility sofware’s flow graph. Other components, 
such as Waterfall Sink, Frequency Sinks, and File Sinks, are also 
included. Fig. 4 depicts the GRC flow graph for collecting EM data from 
nRF52-DK devices. 

3.4. Prepossessing procedure 

EM radiation was sampled at 20 MHz, resulting in 10 EM trace files 
per iPhone and 8 EM trace files per nRF52-DK device. Each trace file, 
representing a time-domain signal, underwent Short-Time Fourier 
Transform (STFT) processing to create frequency-domain windows. In 
deep learning, these windows served as training instances, labeled with 
the corresponding smartphone software activities. 

The resulting EM datasets for each smartdevice were used to build 
individual deep learning models for device-specific software activity 
identification. Certain hyperparameters depended on the EM dataset 
dimensions, and during hyperparameter tuning, specific STFT operation 
settings (FFT window size and overlapping samples) were adjusted. 

4. Experiments and results 

This section describes the implementation of machine learning-based 
EM-SCA approach after the EM traces of the iPhones and nRF52-DK 
devices have been recorded. The overall EM-SCA approach for cross- 
device and cross-model implementation among the selected devices is 
illustrated in Fig. 5. The data and code used for the experiments of this 
work are available on a publicly accessible GitHub repository.1 

4.1. Experiments with smartphones 

4.1.1. Experiment 1: an ML model per device 
Sayakkara et al. used Multi-Layer Perceptron (MLP) machine 

learning models to identify various software behaviours of smartphones 

Table 1 
Specifications of the targeted devices for capturing EM trace files.  

Device System-on- 
Chip 

Architecture CPU Frequency 
(cores) 

Device 
Count 

iPhone 4S Apple A5 ARMv7-A 1 GHz (2) 1 
iPhone 6S Apple A9 ARMv8-A 1.85 GHz (2) 1 
iPhone 8 Apple A11 

Bionic 
ARMv8-A 2.39 GHz (6) 1 

iPhone 13 Apple A15 
Bionic 

ARMv8.5-A 3.23 GHz (6) 3 

iPhone 14 
Pro 

Apple A16 
Bionic 

ARMv8.6-A 3.46 GHz (6) 1  

Fig. 1. Acquisition of electromagnetic (EM) traces while carrying out various 
software activities on the iPhone using the HackRF One SDR connected with h- 
loop near-field antenna and controlled by GNU Radio Companion. 

1 https://github.com/Lojenaa/Portability-of-Devices-in-EMSCA.git. 
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using captured EM traces (Sayakkara and Le-Khac, 2021a). However, in 
their work, individual models were developed for each individual device 
using its corresponding captured EM data. To start, this work reproduces 
the same approach to evaluate its performance on a specific set of 

iPhones. Seven EM trace files were collected from the seven different 
iPhones mentioned in Table 1. Among them, there were 3 iPhone 13 
devices, referred to as iPhone13_I, iPhone13_II, and iPhone13_III in the 
rest of this work. 

Using the acquired EM data, a bespoke model was created for each 
smartphone using their respective datasets. For this purpose, 10,000 
samples from each EM trace file representing a particular software ac-
tivity were used. The relevant software activity is considered as the 
class/label in this instance. The structure of the MLP model used for each 
devices is shown in the Table 2. The input layer of the model consists of 
2048 feature vectors as input shape. There are six intermediate dense 
layers with a Rectified Linear Units (ReLU) activation function, followed 
by an output layer with ten nodes that provides the number of classes in 
each dataset. A total of 4,511,210 distinct parameters can be trained on 
the dataset. 

The model performs a 30-epoch training phase. This duration was 
determined after evaluating the ML model across epochs ranging from 5 
to 100, with 30 identified as the optimal number. The training employs 
the opt optimizer and a sparse categorical cross-entropy loss function. 
Fig. 6 illustrates the observation of the accuracy of the acquired EM 
traces over various iPhone types. The average accuracy of most bespoke 
models was 99 % when testing on each specific device. Additionally, 
Fig. 7 depicts the confusion matrix resulting from validation of one 

Fig. 2. A flow diagram of the smartphone used to set the parameters for acquiring EM traces from each individual smartphone.  

Fig. 3. Acquisition of electromagnetic (EM) traces while carrying out various 
software activities on the Nordic Semiconductor nRF52-DK using the HackRF 
One SDR connected with h-loop near-field antenna. 

Fig. 4. The flow diagram used to set the parameters for acquiring EM traces from each individual Nordic Semiconductor nRF52-DK device.  
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particular iPhone 13 device. 

4.1.2. Experiment 2: models across identical devices 
The previous experiment demonstrated that a machine learning 

model trained and tested using the EM data from the same device ach-
ieves high accuracy. However, the question arises whether a trained and 
tested model on one specific device would perform with similar accuracy 
when exposed to new testing data acquired from another device of the 
same make and model. To explore this aspect, the three ML models were 
created using the specific traces from each of the three iPhone 13 de-
vices. Accordingly the model from one device was tested by feeding it 
samples from the traces of the other two devices. For instance, the 
previously saved model for the iPhone 13_I is immediately fed with to 
the datasets from the iPhone 13_II and iPhone 13_III. Unfortunately, it 
was observed that, even if the devices are of the same make and model, 
the accuracy fell short of expected values; the accuracy was extremely 
poor (0.1050 and 0.2232 respectively). Table 3’s Sayakkara et al.’s EM- 

Fig. 5. The step-by-step procedure of the experiments involving iPhone and Nordic Semiconductor nRF52-DK devices.  

Table 2 
The structure of the machine learning model utilising the recently acquired 
smartphone dataset.  

Layer (type) Output Shape No. of Parameters 

dense (Dense) (None, 1400) 2,868,600 
dense_1 (Dense) (None, 800) 1,120,800 
dense_2 (Dense) (None, 500) 400,500 
dense_3 (Dense) (None, 200) 100,200 
dense_4 (Dense) (None, 100) 20,100 
dense_5 (Dense) (None, 10) 1,010  

Fig. 6. The study applied Sayakkara et al.’s EM-SCA model to assess device 
accuracy. It utilized specific datasets and EM traces for different iPhone activ-
ities, displaying testing accuracy using the MLP machine learning model with 
activities on the x-axis and accuracy on the y-axis. 

Fig. 7. Confusion matrix of one of the dataset. The implementation of the 
Sayakkara et al.’s MLP machine learning model while operating ten different 
iPhone 13 software behaviours. 
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SCA appraoch column displays the reaming findings of the direct testing 
of three iPhone 13 models. 

This experiment shows that existing manner of training models for 
Sayakkara et al.’s EM-SCA does not adhere to the fundamental concept 
of cross-device portability. Even with three identical iPhone 13s, the 
model trained using the data from one iPhone 13 is not transferable to 
the other two devices. To investigate further, the idle activity data from 
the three iPhones were considered as three separate classes to see how 
different they are. A Principle Component Analysis (PCA) utilising the 
first three components was performed on this three class mixed data and 
— as shown in Fig. 8 — it was found that the idle activity from three 
iPhone 13s shows distinct patterns, making it difficult for ML to 
distinguish between identical components. 

Additionally, an MLP model was created to using the traces from the 
three iPhone 13s to distinguish their corresponding idle classes, as 
shown in Table 4. In this MLP model, there are five hidden layers in 
total, as well as an output layer with three nodes that represent the idle 
class of three identical iPhone 13s. A total of 4,510,503 parameters are 
used to train the dataset. The confusion matrix of three identical iPhone 
13 devices, as shown in Fig. 9, was generated after 30 iterations. The 
results indicate that the model can individually identify each idle class of 
three iPhone 13 devices with 100 % accuracy. It reenforces the finding 

that a model trained using the traces from one particular device is not 
transferable to another device - even with the same make and model. 

4.1.3. Experiment 3: multiple datasets from the same device 
In this experiment, multiple datasets were captured from the same 

device, separated by time, i.e., captured on different days. The objective 
was to explore how the radiation captured from the same device varies 
its nature across time, affecting the ability to have a stable ML model to 
recognise software activities running on it. Accordingly, trace datasets 
were created for the iPhone 6S, iPhone 13, and iPhone 14 Pro devices 
repeatedly. Subsequently, a model was trained for each device using the 
dataset created from the same device at a particular day. Then, each 
model was tested using the datasets of the same devices taken on another 
day. 

The green bars of Fig. 10 illustrate the classification accuracy of each 
considered iPhone device models when tested with datasets from 

Table 3 
Cross-device portability validation to evaluate the accuracy value by applying Sayakkara et al.’s EM-SCA model on three identical devices of the iPhone 13 device type 
shown in the first three column under the Testing accuracy and applying transfer learning on the Sayakkara et al.’s EM-SCA approach shown in last three column under 
the testing accuracy.  

Model Name Testing Accuracy for each identical iPhone 13 

Sayakkara et al.’s EM-SCA approach Transfer learning in Sayakkara et al.’s EM-SCA approach 

iPhone13-I iPhone13-II iPhone13-III iPhone13-I iPhone13-II iPhone13-III 

iPhone13-I-model.h5 0.9998 0.1050 0.2232 – 0.9559 0.7034 
iPhone13-II-model.h5 0.0938 0.9998 0.1063 0.8146 – 0.7378 
iPhone13-III-model.h5 0.1010 0.1000 0.9994 0.7000 0.8669 –  

Fig. 8. Observation of idle activity on three iPhone 13s. A 3D scatter plot of the 
idle activity from three identical iPhone 13 devices is seen by using the first 
three components of PCA value from the obtained iPhone 13 s EM trace. 

Table 4 
The layout of the MLP machine learning model employing idle activities of three 
identical iPhone 13 dataset.  

Layer (type) Output Shape No. of Parameters 

dense (Dense) (None, 1400) 2,868,600 
dense_1 (Dense) (None, 800) 1,120,800 
dense_2 (Dense) (None, 500) 400,500 
dense_3 (Dense) (None, 200) 100,200 
dense_4 (Dense) (None, 100) 20,100 
dense_5 (Dense) (None, 3) 153  

Fig. 9. Confusion matrix of three iPhone 13 identical devices using an Sayak-
kara et al.’s EM-SCA model employing MLP machine learning approach to 
assess the cross-device portability of the similar type of devices. 
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different days. The results indicate that traces taken across different 
times from the same device are considerably different. This may have 
been caused due to minor variation in the data acquisition process, such 
as the different placement locations of the H-loop antenna, as well as 
variation of external EM noise sources in different days. Under these 
circumstances, it may be necessary to produce EM trace datasets with a 
significant variety by distributing it across time. 

4.1.4. Experiment 4: retraining output layer of same device 
Instead of applying a trained model directly to a new trace dataset of 

the same device to validate its performance, a transfer learning tech-
nique can be used to adjust a pretrained model to a new trace dataset. 
For this purpose, the final layer (i.e., output layer) of the previously 
trained model, is trained while the other layers are frozen across 
different new trace datasets as shown in the Table 2. The previously 
trained model is reconstructed with 4,511,210 parameters, among that, 
1010 trainable parameters, and 4,510,200 non-trainable parameters for 
training the last layer across 30 epochs. 

The yellow bars in Fig. 10 illustrate the accuracy of the ML models of 
each iPhone models with retrained final layer by new datasets from the 
same device. It is evident that the accuracy of the transfer learning 
models are significantly higher than models that do not have retrained 
output layers. The iPhone 13 exhibits a significant improvement over 
the other two versions of iPhones. The accuracy levels for the iPhone 6s 
and the 14 Pro are approximately 53 % and 61 % respectively. There-
fore, the accuracy obtained using the transfer learning technique is 
better than that achieved using direct cross-model machine learning 
technique. 

The training time of models were also compared between the 
Experiment 3 and 4; the latter is comparable to being less than it was 
when training a complete model initially in the former, as shown in 
Fig. 11. The time required to train the entire dataset for each iPhone 6s, 
13, and 14 Pro initially using the direct model for 30 epochs is displayed 
as green bars in Fig. 11, whereas the time required to train just the final 
layer for 30 epochs using the transfer learning technique is shown as 
yellow bars. It is abundantly clear that using the transfer learning 
technique saves a significant amount of time compared to training the 
entire dataset, which is one of the key considerations when conducting 
an investigation on a smart device to obtain forensic insights. 

4.1.5. Experiment 5: transfer learning with multiple devices 
Based on the findings of the previous experiments, it is evident that 

using a transfer learning approach improves the robustness of ML 

models. To further the cross-device portability requirement, the final 
experiment on iPhones considered the possiblity of transferring a model 
across data from multiple devices of the same make and model. 
Accordingly, the pre-trained individual models of each iPhone 13 device 
were retrained using the trace datasets of other iPhone 13 comparable 
devices using transfer learning technique, by only retraining the output 
layer of all three iPhone 13 models. This is done in order to validate the 
classification results within each individual iPhone 13 device as well as 
across EM radiation data across multiple iPhone 13 devices, i.e., cross- 
device portability of the model with the similar versions of smart-
phones. The outcomes of this experiment are illustrated in the final three 
columns of Table 3 under a heading Transfer learning in Sayakkara et al.’s 
EM-SCA approach. The results highlight a significant improvement over 
direct pre-trained model learning on similar types of other devices. 
Despite the fact that the increment value varies, the improvement per-
centage is very high approximately between 60 % and 75 %. 

Multiple samples from each iPhone 6S, 13, and 14 Pro were acquired 
in order to further evaluate the results. After creating customised models 
using the newly collected trace datasets for all the devices — iPhone 6S, 
iPhone 13, and iPhone 14 Pro — these models were used to verify the 
accuracy and training time while implementing the cross-model testing 
by using the direct models and transfer learning. Additionally, transfer 
learning was applied on all three versions of the trace datasets that were 
gathered while training the output layer to verify accuracy when doing 
cross-device, cross-model experiments on similar smartphone versions. 
The outcomes of the cross-model validations of the iPhone 6S, 13, and 
14 Pro are displayed in Table 6, Table 7, and Table 8 respectively. 

4.2. IoT experiment 

Two identical Nordic Semiconductor nRF52-DK devices, named as 
Nordic-1 and Nordic-2, were used to validate the cross-model, cross-de-
vice investigation of IoT devices, following the same procedure as the 
iPhone experiments. Eight different EM traces were captured at the 2.4 
GHz system clock frequency of the nRF52-DK. Three sets of samples 
were obtained from each device, and the current EM-SCA model was 
used to create a tailored model for each sample of each device, as shown 
in Table 5. This table illustrates the exact model that was used for the 
iPhone experiment, with the exception of the output layer, which is 
dependent on the number of activities running on the specific device. 
Additionally, the testing accuracy of the Sayakkara et al.’s EM-SCA 
model using MLP executed for 30 iterations in order to validate the 
model for each sample is shown in Fig. 12. 

Fig. 10. The accuracy of the same set of EM signals for the different iPhone 6S, 
13, and 14 Pro devices was compared using the direct machine learning model 
of the EM-SCA approach and the transfer learning technique. 

Fig. 11. The learning time of the same set of EM signals for the different iPhone 
6S, 13, and 14 Pro devices was compared using the direct machine learning 
model of the EM-SCA approach and the transfer learning technique. 
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Additionally, the nRF52-DK devices were used across different 
models and devices, in a similar fashion to the iPhone experiment. This 
approach aimed to evaluate the IoT device’s performance by directly 
applying the model from one device to another and employing transfer 
learning techniques. Table 9 displays the findings of the direct appli-
cation of the model on other set of samples and the transfer learning 
application by training only the last layer of the pre-trained model. 

As expected, the accuracy of the Nordic Semiconductor samples was 
extremely low during the cross-model, cross-device experiment, but it 
significantly improved after using the transfer learning technique by 
training the output layer to the cross-models as shown in Fig. 13. 

5. Discussion and future direction 

In a controlled environment, the EM acquisition process allows us to 
observe radiation without effects from external noise sources. However, 
real-world scenarios of digital investigations involve varying circum-
stances in the environment. Therefore, we have opted to capture EM 
radiation from devices in random locations in this study. 

Noise cancellation of the raw electromagnetic (EM) traces serves as a 
viable strategy to enhance accuracy during the process of transfer 
learning for cross-device implementations. EM emissions generated by 
electronic devices often include unwanted background noise that can 
distort the integrity of the signal. This noise can arise from various 

sources such as electromagnetic interference, signal coupling, and 
environmental factors. By applying noise cancellation techniques, such 
as adaptive filtering or signal processing algorithms to the raw EM 
traces, it becomes possible to isolate the desired signal from the noise. In 
the context of transfer learning, where a model learns from one device 
and applies its knowledge to another, having accurate and consistent 
data is crucial. 

The significance of noise cancellation lies in its ability to enhance the 
fidelity of the data used for training and validation. When the training 
data is cleaner and more representative of the true device behaviour, the 
resulting model is more likely to generalise well to other devices. This is 
particularly important for cross-device implementations, where the goal 
is to transfer the learned knowledge from one device to another. Overall, 
by employing noise cancellation techniques to refine the raw EM traces, 
the accuracy of transfer learning on cross-device implementations can 
notably be improved. This leads to more reliable and effective models 
that can successfully adapt knowledge across different devices, 
contributing to the advancement of digital forensics and related fields, e. 
g., security and device analysis. 

In addition to noise cancellation, there are several other transfer 
learning techniques that can be employed to enhance the accuracy of 
cross-device implementations. One notable approach involves modi-
fying the architecture of the machine learning model during the transfer 
learning process. Another technique is training only the input layer 
while keeping the rest of the layers frozen. This can be particularly 
effective when the lower-level features learned by the model are rele-
vant to the new device’s data. By retaining the pre-trained knowledge in 
the deeper layers and fine-tuning only the input layer, the model can 
quickly adapt to the characteristics of the new device’s data, leading to 
improved accuracy. 

Alternatively, freezing either the top or bottom part of the layers 
while fine-tuning the other part is another powerful technique. When 
the lower layers are kept frozen, the model retains the foundational 
features learned from the original device, while adapting its higher-level 
features to the new characteristics of the device. On the other hand, 
freezing the top layers preserves the abstract features learned from the 
original data, and fine-tuning the lower layers tailors the model to the 
specifics of the new device’s data. This approach strikes a balance be-
tween reusing general features and accommodating device-specific 
elements. 

These transfer learning techniques capitalise on the existing knowl-
edge within a pre-trained model while enabling it to adapt to new data 
sources. This adaptability is particularly valuable when dealing with 

Table 5 
The layout of the current machine learning model employing the newly obtained 
dataset from Nordic Semiconductor.  

Layer (type) Output Shape No. of Parameters 

dense (Dense) (None, 1400) 2,868,600 
dense_1 (Dense) (None, 800) 1,120,800 
dense_2 (Dense) (None, 500) 400,500 
dense_3 (Dense) (None, 200) 100,200 
dense_4 (Dense) (None, 100) 20,100 
dense_5 (Dense) (None, 8) 808  

Fig. 12. The individual dataset along with the EM traces for eight distinct 
activities for both Nordic Semiconductors are described on the x-axis, which 
illustrates the testing accuracy in y-axis while using the MLP machine 
learning model. 

Fig. 13. The accuracy of the same set of EM signals for the different nRF52-DK 
devices was compared using the direct machine learning model of the EM-SCA 
approach and the transfer learning technique. 
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cross-device implementations, where data distribution and characteris-
tics might vary significantly between devices. By incorporating these 
techniques, the accuracy can be significantly boosted, thereby facili-
tating effective knowledge transfer across different devices and ulti-
mately enhancing the utility of the model in various applications such as 
classification, detection, and analysis. 

In real-world use cases, a necessity to transfer a trained model using 
the data from a suspect device does not arise. Instead, transfer learning 
can be employed to generalise a model to a large number of similar 
devices with time. By doing so, the model becomes generalised enough 
to analyse a newly encountered device without the need for retraining 
using its specific data. 

6. Conclusion 

This study unveils the challenge of reusing ML models to acquire 
forensic insights from smart devices, i.e. lack of cross-device portability. 
Initially, training a model directly using data from one device and 
testing it with data from another device yielded suboptimal outcomes. 
Subsequent attempts with training models using mixed data from mul-
tiple similar devices also proved unsuccessful, highlighting the chal-
lenges involved in establishing a cohesive model across varied data 
sources. 

Under these circumstances, the use of transfer learning strategies 
proved to be a crucial turning point. In particular, the adaptability of the 
model and performance were considerably increased by merely training 
the output layer. This innovation was especially noticeable in situations 
where various samples came from the same devices as well as identical 
devices. It emphasises the necessity of adaptable strategies that take into 
account the distinctive qualities of multiple devices while utilising 
transfer learning to close the gap between them. The effective use of the 
transfer learning technique demonstrates its potential to revolutionise 
EM-SCA model portability and knowledge transfer, paving the way for 
more precise and effective digital forensic investigations. 

Despite its promise for forensic and analytical purposes, EM-SCA 
with transfer learning remains a complex and evolving challenge, 
requiring careful consideration and validation. Nevertheless, transfer 
learning emerges as a promising approach to advance digital forensic 
investigations on smart devices using EM traces. This method enhances 
accuracy, optimises resource utilisation, adapts to device diversity, ad-
dresses data scarcity, and enables real-time analysis by leveraging 
knowledge from specific or similar types of devices. As digital threats 
evolve, transfer learning becomes a valuable tool for forensic experts in 
uncovering digital evidence and securing digital environments from 
smart devices through EM-SCA.  

Appendix 

The aggregate results of the various samples performed to compare the cross-model and cross-device implementation between the iPhone 6S, 13, 
and 14 Pro are presented Tables 6–8 respectively. Additionally, the results of the Nordic Semiconductor nRF52-DK are presented in Table 9.  

Table 6 
Employing empirical analysis of various samples taken at different times from the iPhone 6S to determine the testing accuracy. The samples were assessed using two 
methods: direct application of the present model to newly collected samples without training (referred to as ”Direct”), and application of transfer learning of the 
existing model (referred to as ”Transfer”).  

Device Name (dataset) Training Mode Model Name 

iPhone6S–I-Sample1 iPhone6S–I-Sample2 iPhone6S–I-Sample3 

iPhone6S–I-Sample1 Direct 0.9961 0.1214 0.1058 
Transfer – 0.5166 0.3624 

iPhone6S–I-Sample2 Direct 0.1877 0.9982 0.1224 
Transfer 0.4795 – 0.3753 

iPhone6S–I-Sample3 Direct 0.1011 0.1186 0.9965 
Transfer 0.5803 0.6069 –   

Table 7 
Employing empirical analysis of various samples taken at different times from the iPhone 13 to determine the testing accuracy. The samples were assessed using two 
methods: direct application of the present model to newly collected samples without training (referred to as ”Direct”), and application of transfer learning of the 
existing model (referred to as ”Transfer”).  

Device Name 
(dataset) 

Training 
Mode 

Model Name 

iPhone13-I- 
Sample1 

iPhone13-I- 
Sample2 

iPhone13-I- 
Sample3 

iPhone13-I- 
Sample4 

iPhone13-I- 
Sample5 

iPhone13-I- 
Sample6 

iPhone13- 
II 

iPhone13- 
III 

iPhone13-I- 
Sample1 

Direct 0.9998 0.0690 0.0131 0.0978 0.1334 0.2507 0.0818 0.1001 
Transfer – 0.8458 0.7429 0.8223 0.7809 0.8255 0.8092 0.7400 

iPhone13-I- 
Sample2 

Direct 0.1391 0.9999 0.0923 0.1957 0.1931 0.1491 0.2102 0.1000 
Transfer 0.8370 – 0.6899 0.8116 0.8068 0.7863 0.8509 0.6868 

iPhone13-I- 
Sample3 

Direct 0.0943 0.2478 0.9990 0.0035 0.3220 0.1212 0.0412 0.0997 
Transfer 0.8909 0.8527 – 0.8781 0.9028 0.8517 0.9008 0.7418 

iPhone13-I- 
Sample4 

Direct 0.1892 0.0968 0.0000 0.9997 0.0042 0.0597 0.1796 0.0308 
Transfer 0.9262 0.9177 0.8158 – 0.8771 0.8792 0.9334 0.9194 

iPhone13-I- 
Sample5 

Direct 0.0470 0.1325 0.0579 0.1644 0.9997 0.1312 0.1119 0.1000 
Transfer 0.7359 0.8023 0.7189 0.6657 – 0.8655 0.7844 0.5884 

iPhone13-I- 
Sample6 

Direct 0.1260 0.1066 0.1200 0.0857 0.1439 0.9998 0.0857 0.1000 
Transfer 0.8382 0.7869 0.7318 0.7675 0.9004 – 0.8081 0.6973 

iPhone13-II Direct 0.0612 0.1540 0.0291 0.1997 0.0708 0.1375 0.9996 0.0997 
Transfer 0.9572 0.9858 0.8813 0.9808 0.9601 0.9488 – 0.9024 

iPhone13-III Direct 0.1927 0.1179 0.1041 0.0884 0.1002 0.0989 0.1139 0.9991 
Transfer 0.7409 0.7743 0.6533 0.7625 0.7086 0.6916 0.7784 – 
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Table 8 
Employing empirical analysis of various samples taken at different times from the iPhone 14 Pro to determine the testing accuracy. The samples were assessed using 
two methods: direct application of the present model to newly collected samples without training (referred to as ”Direct”), and application of transfer learning of the 
existing model (referred to as ”Transfer”).  

Device Name (dataset) Training 
Mode 

Model Name 

iPhone14Pro-I- 
Sample1 

iPhone14Pro-I- 
Sample2 

iPhone14Pro-I- 
Sample3 

iPhone14Pro-I- 
Sample4 

iPhone14pro-I- 
Sample5 

iPhone14Pro-I- 
Sample1 

Direct 0.9962 0.1108 0.1046 0.0916 0.0999 
Transfer – 0.4279 0.2965 0.3521 0.3239 

iPhone14Pro-I- 
Sample2 

Direct 0.1248 0.9975 0.0969 0.0756 0.1000 
Transfer 0.4164 – 0.2967 0.3608 0.3109 

iPhone14Pro-I- 
Sample3 

Direct 0.1100 0.0904 0.9942 0.1049 0.1000 
Transfer 0.1941 0.2065 – 0.2118 0.1796 

iPhone14Pro-I- 
Sample4 

Direct 0.1013 0.1049 0.1027 0.9927 0.1000 
Transfer 0.2499 0.2521 0.2272 – 0.1642 

iPhone14Pro-I- 
Sample5 

Direct 0.0873 0.0836 0.0962 0.1036 0.9990 
Transfer 0.6161 0.6336 0.4801 0.4868 –   

Table 9 
Employing empirical analysis of various samples taken at different times from the nRF52-DK Nordic Semiconductor to determine the testing accuracy. The samples 
were assessed using two methods: direct application of the present model to newly collected samples without training (referred to as ”Direct”), and application of 
transfer learning of the existing model (referred to as ”Transfer”).  

Device Name (dataset) Training Mode Model Name 

Nordic-I- 
Sample1 

Nordic-I- 
Sample2 

Nordic-I- 
Sample3 

Nordic-II- 
Sample1 

Nordic-II- 
Sample2 

Nordic-II- 
Sample3 

Nordic-I-Sample1 Direct 0.9960 0.4395 0.2107 0.2009 0.0043 0.1231 
Transfer – 0.9445 0.9571 0.9004 0.9617 0.9245 

Nordic-I-Sample2 Direct 0.2472 0.9967 0.3146 0.2439 0.0447 0.0988 
Transfer 0.9389 – 0.9621 0.7728 0.9355 0.8946 

Nordic-I-Sample3 Direct 0.4606 0.5052 0.9955 0.1296 0.0025 0.1090 
Transfer 0.9470 0.9372 – 0.8132 0.9406 0.9204 

Nordic–II–Sample1 Direct 0.0057 0.2587 0.0214 0.9929 0.1263 0.3965 
Transfer 0.8075 0.7536 0.8890 – 0.8664 0.8494 

Nordic–II–Sample2 Direct 0.0006 0.1681 0.1432 0.1727 0.9955 0.3727 
Transfer 0.8795 0.8958 0.9127 0.9189 – 0.9363 

Nordic–II–Sample3 Direct 0.1282 0.0679 0.1118 0.1684 0.0712 0.9951 
Transfer 0.8795 0.8958 0.9127 0.9189 0.9363 –  
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