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a b s t r a c t

The task of generating network-based evidence to support network forensic investigation is becoming
increasingly prominent. Undoubtedly, such evidence is significantly imperative as it not only can be used
to diagnose and respond to various network-related issues (i.e., performance bottlenecks, routing issues,
etc.) but more importantly, can be leveraged to infer and further investigate network security intrusions
and infections. In this context, this paper proposes a proactive approach that aims at generating accurate
and actionable network-based evidence related to groups of compromised network machines (i.e.,
campaigns). The approach is envisioned to guide investigators to promptly pinpoint such malicious
groups for possible immediate mitigation as well as empowering network and digital forensic specialists
to further examine those machines using auxiliary collected data or extracted digital artifacts. On one
hand, the promptness of the approach is successfully achieved by monitoring and correlating perceived
probing activities, which are typically the very first signs of an infection or misdemeanors. On the other
hand, the generated evidence is accurate as it is based on an anomaly inference that fuses data behavioral
analytics in conjunction with formal graph theoretic concepts. We evaluate the proposed approach in
two deployment scenarios, namely, as an enterprise edge engine and as a global capability in a security
operations center model. The empirical evaluation that employs 10 GB of real botnet traffic and 80 GB of
real darknet traffic indeed demonstrates the accuracy, effectiveness and simplicity of the generated
network-based evidence.
© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Undeniably, network forensics presents a rich problem space
that typically deals with the collection, preservation, analysis and
presentation of network-based knowledge. It is often exploited to
generate actionable insights and intelligence that could be effec-
tively leveraged by investigators. The latter is especially factual
when attempting to fingerprint, assess and mitigate network se-
curity intrusions and misdemeanors. However, this attempt is
recurrently hindered by various current technical challenges that
face network forensics. First, network forensic analysts are signifi-
cantly overwhelmed by huge amounts of low quality evidence.
Such evidence is often generated from intrusion detection systems
that are known to suffer from elevated levels of both false positives
and negatives (Garcia-Teodoro et al., 2009), rendering the
r Ltd on behalf of DFRWS. This is a
combined task of identifying relevant information and attributing
the true malicious entity extremely challenging, if not impossible.
Second, most network forensic approaches are passive or reactive,
employ manual ad-hoc methods and are time consuming (Pilli
et al., 2010; Adeyemi et al., 2013). This makes the generated evi-
dence relatively obsolete to be acted upon in a timely manner and
most certainly decreases its reliability and wastes valuable re-
sources. Third, contemporary cyber attacks are getting more so-
phisticated than ever and continue to operate in an excessively
coordinated and distributed manner. To this end, network forensic
science is relatively lagging behind such advancement in the at-
tacks. Further, most current network forensic practices do not
support distributed inference, and if they do, they force the analysts
to go through an error-prone, agonizing process of correlating
dispersed unstructured evidence to infer a specific security
incident.

Indeed, local and Internet-scale networks have been increas-
ingly getting abused by various modernized attacks, including,
distributed denial of service attacks (Fu et al., 2012), amplification
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attempts (Kührer et al., 2014), spamming (Xie et al., 2008) and
advanced persistent threats (Daly, 2009). Such attacks are almost
always being generated by groups of infected and distributed ma-
chines controlled by an external entity (Silva et al., 2013). In this
paper, we refer to the latter orchestrated malicious groups as
‘campaigns’. An effective approach to generate network forensic
insights and inferences related to those campaigns is to analyze
their generated probing activities. Such activities refer to recon-
naissance techniques that are typically employed by those cam-
paigns to obtain information about their targets prior to launching
their targeted attacks (Allman et al., 2007). In fact, Panjwani et al.
(2008) concluded that around 50% of attacks are indeed preceded
by some form of probing activity. Additionally, such activity has
been reported in numerous occasions as a concrete evidence of
infection (Wang et al., 2014a; Whyte et al., 2006).

In essence, the presented research and development work at-
tempts to answer the following question: How can we design an
approach that is able to effectively process, analyze and correlate large
volumes of network traffic to generate, in a very prompt manner,
formal, highly-accurate and actionable network forensic evidence that
could be leveraged to infer infected campaigns?

This paper attempts to answer this question. Specifically, the
core contributions of this paper could be summarized in the
following:

� Proposing a set of data behavioral analytics that scrutinize
perceived probing activities to capture their various obscured
features (i.e., machinery, strategies, natures, etc.). The analytics
uniquely employ numerous statistical and entropy-based tech-
niques to effectively generate feature vectors related to the
infected probing sources or hosts.

� Presenting Behavioral Service Graphs, a novel approach that aims
at providing investigators/analysts, network administrators
and/or security operators with network forensic evidence
related to infected machines within a constructed campaign.
The approachmodels the probing sources that show evidence of
infection as graphs. By exploiting ancillary graph theoretic
concepts such as the maximum spanning tree and Erd}os-R�enyi
random graphs, the approach is able to infer and correlate such
distributed groups of infected machines. The approach is
prompt since (1) it exploits probing activities to rapidly infer
infections and (2) the inferred group of infected machines
possesses the minimum number of members to formally claim
that such group is indeed a malicious campaign. The latter idea
is especially imperative as this will allow actionable thwarting of
campaigns as soon as there exists evidence of their construction.

� Empirically evaluating the proposed approach using two real
and significant datasets under two different deployments sce-
narios. The output concurs that the extracted inferences exhibit
noteworthy accuracy and can generate significant, accurate and
formal forensic insights that could be used for prompt mitiga-
tion and to facilitate further focused analysis.

The road-map of this paper is as follows. In the next section, we
elaborate on the proposed approach. Specifically, we disclose the
data preprocessing step, the employment of the data behavioral
analytics, the rationale and construction of Behavioral Service
Graphs and detail how they can be exploited to achieve the
intended goals. In Section Empirical evaluation, we empirically
evaluate the proposed approach and verity its accuracy and in-
sights. We provide a discussion related to the approach, its limi-
tations and possible improvements in Section Proposed approach:
limitations & possible improvements. In Section Related work, we
survey the related work on various concerned topics. Finally, Sec-
tion Concluding remarks summarizes the goals, the methods and
the results of the proposed approach and paves the way for future
work that aims at providing extended network-based evidence to
further support investigations.

Proposed approach

In this section, we describe and detail the rationale and
employed steps of the proposed approach. In a nutshell, the pro-
posed approach (1) fingerprints and extracts probing activities
from perceived network traffic, (2) applies the proposed behavioral
analytics to generate feature vectors related to the infected probing
sources, (3) constructs Behavioral Service Graphs that model those
probing machines, and (4) manipulates such graphs to infer
distributed campaigns possessing minimum members of infected
machines. The latter four steps are detailed next.

Fingerprinting probing activities

Motivated by the fact that probing activities precede a plethora
of attacks (Allman et al., 2007; Panjwani et al., 2008) coupled with
the rationale that such activities are the very first signs of any
infection (Wang et al., 2014a; Whyte et al., 2006), the proposed
approach leverages the latter to extract probing activities generated
from infected machines. The intrusion detection system commu-
nity provides extensive techniques on how to accomplish this task
(Bhuyan et al., 2011). In this work, to successfully and accurately
fingerprint probing activities, we leverage the work by Staniford
et al. (2002) and cross match the output, for validation purposes,
by using two open-source detection systems, namely, Snort
(Roesch et al, 1999) and Bro (Paxson, 1999). We have selected to
employ the latter three approaches as they are the de-facto stan-
dards when it comes to probing detection, possess the capability to
operate in real-time, and have been extensively and repetitively
evaluated and validated. The output of this step is probing traffic,
generated from unique sources, coupled with their network ses-
sions that have been saved in packet capture (.pcap) format for
further analysis.

Data behavioral analytics

In order to capture the behaviors of the inferred probing sour-
ces, we propose to employ the following set of behavioral analytics.
This aims at generating the feature vectors of the infected probing
machines to be employed as input for the subsequent steps. The
proposed approach takes as input the previously extracted probing
sessions and outputs a series of behavioral characteristics related to
the probing sources. In what follows, we pinpoint the concerned
questions and subsequently present the undertaken approach in an
attempt to answer those.

Is the probing traffic random or does it follow a certain pattern?
When sources execute their probing traffic, it is imperative to

infer and capture the fashion in which they achieve their goal. To
realize this task, we proceed as follows. For each unique pair of
hosts extracted from the probing sessions (probing source to
target), we test for randomness of their inter-arrival times in the
traffic using the non-parametric Wald-Wolfowitz statistic test. If
the outcome is positive, we record it for that precise probing source
and apply the test for the remaining probing sessions. If the result is
negative, we conclude that the generated traffic follows a certain
pattern. To deduce the particular employed pattern, we model the
probing traffic as a Poisson distribution and capture the maximum
likelihood estimates for the Poisson parameter l that corresponds
to that traffic, at a 95% confidence level. The choice to model the
traffic as a Poisson process is motivated by our previous work (Bou-
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Harb et al., 2016), where we have noticed that probe arrivals is
consistent with that distribution. Please note that we are not
particularly interested in the derived pattern values; we only
employ them to characterize the probing traffic to build the feature
vectors of the probing sources.

How are the targets being probed?
As shown in Dainotti et al. (2012), coordinated probing sources

adopt numerous strategies when probing their targets. These
strategies could include IP-sequential, reverse IP-sequential, uni-
form permutation or other types of permutations. In an effort to
infer the probing strategies, we execute the following. For each
probing source, we retrieve its corresponding distribution of target
IP addresses. To distinguish between sequential and permutation
probing, we leverage the Mann-Kendall statistic test, a non-
parametric hypothesis testing approach, to check for mono-
tonicity in those distributions. The rationale behind the mono-
tonicity test is that sequential probing will indeed induce a
monotonic signal in the distribution of target IP addresses while
permutation probing will not. Moreover, in this work, we set the
significance level to 0.5% since an elevated value could introduce
false positives. To discriminate between (forward) IP-sequential
and reverse IP-sequential, for those distributions that tested posi-
tive for monotonicity, we also take note of the slope of the distri-
bution; a positive slope renders a forward IP-sequential strategy
while a negative one defines a reverse IP-sequential strategy. For
those distributions that tested negative for monotonicity (i.e., not a
sequential strategy), we apply the chi-square goodness-of-fit sta-
tistic test (Anderson and Darling, 1954). The latter insight will
notify us whether or not the employed strategy is a uniform per-
mutation; if the test returns a negative output, then the employed
strategy will be deemed as a permutation; uniform permutation
otherwise.

What is the nature of the probing source?
It is of momentous importance as well to infer the nature of the

probing source; is it a probing tool or a probing bot. In this work, we
are predominantly interested when the sources are bots as this will
provide more concrete evidence of infection. From the two pre-
ceding questions, we can deduce those probing events that are
random and monotonic. It is known that monotonic probing is a
behavior of probing tools in which the latter sequentially probe
their targets (IP addresses and ports). Additionally, for random
events (i.e., events that do not disclose the use of certain patterns in
their inter-arrival times), the monotonic trend checking would aid
in filtering out traffic caused by non-bot scanners (Li et al, 2011).
Hence, we deem a probing source as employing a probing bot only if
their traffic possesses pattern usage and if they adopt a probing
approach other than sequential probing (i.e., including reverse IP-
sequential); a probing tool otherwise. To this end, we acknowl-
edge that this problem of classifying the nature of the probing
source is indeed challenging. Future work will attempt to further
fortify the extracted evidence from our employed heuristic method
by investigating the correlation between the perceived probing
traffic and probing traffic extracted from malware samples.

Is the probing targeted or dispersed?
When sources probe their targets, it would be also beneficial to

infer whether their probing traffic is targeted towards a small set of
IP addresses or dispersed. In an attempt to answer this, for each
probing source b, we denote GF(b) as the collection of flows
generated by that particular source. The destination target IP ad-
dresses used by the flows in GF(b) induce an empirical distribution.
Consequently, we adopt the concept of relative uncertainty (Xu
et al., 2005), an information theoretic metric and execute it on
those distributions. The latter index is a conclusive metric of vari-
ety, randomness or uniformity in a distribution, regardless of the
sample size. A result that is close to 0 points out that the probing
source is employing a targeted approach while an outcome value
close to 1 means that its corresponding probing traffic is dispersed.

Miscellaneous inferences
For each probing bot, we also record its rate (packets/second), its

ratio of destination overlaps defined as r ¼ nc=nt where nc defines
the number of common sessions between all the sources and nt is
total number of all probing sessions, and its target ports.

It is evident that the latter set of behavioral analytics signifi-
cantly rely on various statistical tests and methods to uncover the
behavior of the probing sources. We emphasize that such approach
is arguably more sound than heuristics or randomly set thresholds.
Further, it is noteworthy to indicate that all the employed statistical
tests assume that the data is drawn from the same distribution.
Since the approach operates on one type of data, namely, network
data extracted from a certain network topology, we can safely
presume that the values follow and are in fact drawn from the same
distribution.

Behavioral Service Graphs

We model the probing machines that show signs of infection
(i.e., those inferred as bots using the behavioral analytics) coupled
with their feature vectors using what we refer to as Behavioral
Service Graphs. Such graphs are of the form G ¼ ðN; EÞ where N
represents the set of infected probing sources/machines (i.e.,
nodes) and E characterizes the edges between such nodes. It is
worthy to mention that G is an undirected complete graph (Díaz
et al., 2002), with weights on the edges representing the proba-
bility of behavioral similarity (Pbs) computed by piecewise com-
parisons between the previously inferred feature vectors of each of
the nodes.
To clarify how Pbs is computed, consider the above two feature
vectors that capture the behavior of two distinct bots. By per-
forming binary comparisons between each corresponding pair of
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features of those bots, one can note that the similarity is 3=6 or 50%.
Please note that for the rate and destinations overlap features, we
consider a conservative 15% as being similar. It is also important to
mention that we generate different complete graphs for different
targeted port numbers that cluster a number of inferred bots. This
will indeed provide the capability to identify infected machines
participating in each unique campaign, given that there are mul-
tiple, simultaneously active different campaigns. Therefore, in
essence, each constructed graph is actually modeling infected
machines, their behavioral similarity and what specific network
service is being probed. This aims at providing the investigator with
additional inference about the activities of the current infections
and to warn about possible future attacks that could specifically
abuse that service.

In summary, Behavioral Service Graphs allow the prompt
inference of bot infectedmachines by solely analyzing their probing
activities. Further, they extend such inferences to automate the
amalgamation of evidence from distributed entities, as well as
providing auxiliary valuable insights related to the behaviors of the
infected machines and their possible intended actions.

Friends of the enemy stay closely connected: inferring infected
campaigns

Campaigns of infected machines could be distinguished from
other security incidents as (1) the population of the participating
bots is several orders of magnitude larger, (2) the target scope is
generally the entire Internet Protocol (IP) address space, and (3) the
bots adopt well orchestrated, often botmaster-coordinated, stealth
strategies that maximize targets coverage while minimizing
redundancy and overlap (Dainotti et al., 2015). In the context of an
enterprise network, such campaigns not only hinder the legitimate
users' overall experience and productivity, but also jeopardize the
entire cyber security of the enterprise (i.e., causing vulnerabilities
or opening backdoors in the internal network). Further, they
significantly degrade the provided quality of service since the
compromisedmachines will most often cause an excessive increase
in bandwidth utilization that could be rendered by extreme peer to
peer usage, spamming, command-and-control communications
and malicious Internet downloads. Additionally, if the enterprise
network would be used to trigger, for instance, a malware-
orchestrated spamming campaign, then such enterprise could as
well encounter serious legal issues for misusing its infrastructure
(i.e., for example, under the US CAN SPAM Act (Parliament of
Canada; Governement of the USA)). Consequently, this will
immensely adversely affect the enterprise's business, reliability and
reputation.

To this end, forensic investigators of enterprise networks are
interested in possessing a capability that aims at inferring such
campaigns of infected machines. However, one crucial requirement
of such capability would be its promptness in deeming a group of
infected machines as a campaign. In other words, the undertaken
approach would be required to provide tangible evidence related to
the minimum number of infected machines that compose a
campaign. Indeed, this would generate actionable evidence that
could be exploited to promptly thwart the expansion of the
campaign and thus would significantly limit the sustained possible
collateral damage and any symptoms of infection. We next elabo-
rate on such an approach.

Previous work (Rajab et al., 2006) demonstrated that coordi-
nated bots within a campaign probe their targets in a similar
fashion. Indeed, Behavioral Service Graphs were initially engi-
neered to naturally and intuitively support the latter; they cluster
the infected machines targeting the same service and they combine
their feature vectors (and their similarly probability) for further
analysis. The proposed approach executes two steps to retrieve the
minimum number of infected machines to deem a group of such
machines as a campaign.

First, given a complete Behavioral Service Graph G ¼ ðN; EÞ, the
approach extracts a subgraph G0 ¼ ðN0; E0Þ where N0 ¼ N and E04E.
This aims at reducing the number of edges while maximizing the
behavior probability between the infectedmachines (i.e., nodes). To
achieve this task, we employ the graph theoretic concept of a
maximum spanning tree (Ozeki and Yamashita, 2011) by imple-
menting a slightlymodified version of Kruskal's algorithm (Kruskal,
1956). Although there exists a plethora of approaches for the cre-
ation of maximum spanning trees, the latter algorithm was the
basis of many and is abundantly available in numerous tool sets.
Second, to understand the structure of the subgraph formed by
members of a botnet on the complete graph, suppose that there are
m bots, thus forming a graph with m corresponding nodes. Let the
set X ¼ fX1;X2;/;Xmg denote these nodes and Pe denote the
probability of having an edge between any given Xi and Xj, for i s j
where 1 � i � m and 1 � j � m. Since Pe would exist with an equal
and a random probability given any pair of Xi and Xj, the subgraph
formed by the nodes X1, X2,/, Xm on a complete graph is indeed an
Erd}os-R�enyi random graph, where each possible edge in the graph
possesses an equal probability of being created.

One interesting property shown by Erd}os and R�enyi is that such
graphs have a sharp threshold of edge probability for graph con-
nectivity (Milo et al., 2002). Simplified, if the edge-probability is
greater than such threshold, then all of the nodes produced by such
a model will be strongly connected. Erd}os and R�enyi have shown
that the sharp connectivity threshold is ths ¼ lnq=q, where q is the
number of nodes in the graph. The proposed approach exploits this
neat graph theoretic property; given the previously extracted
maximum spanning tree subgraph, the approach eliminates all
nodes/edges whose bot-edge probability (i.e., behavioral similarity
Pbs) is less than ths, deeming the rest of the bots, given such formal
forensic evidence, as the niche of the botnet.

In conclusion, according to the random peer selection model,
the niche members of the same infected campaign are expected to
be closely connected to each other on a subgraph extracted from
Behavioral Service Graphs.

Empirical evaluation

We evaluate the proposed approach in two different deploy-
ment scenarios using two real datasets. This aims at validating the
accuracy, effectiveness and simplicity of the generated network-
based evidence as well as demonstrating the portability of the
proposed approach.

Scenario 1: enterprise capability

In this first scenario, Behavioral Service Graphs are employed to
infer infected machines within an enterprise network. Although
the notion of an enterprise network could extend to an Internet
service provider or even a backbone network, in this scenario, for
simplicity purposes, we depict a small department within an or-
ganization having a deployment setting similar to what is illus-
trated in Fig. 1. Such department includes 26 machines that are
connected to the Internet via an enterprise commodity edge server.
The proposed approach is deployed on that server.

Building the ground truth
In order to systematically assess the accuracy of the proposed

scheme, one needs to know the IP addresses/hosts of the members
of the malicious campaign in a given network. Otherwise, nothing
can be said about the true positive or false alarm rate.



Fig. 1. The proposed approach deployed as an enterprise edge engine.
Fig. 2. The creation of the Enterprise Complete and Sub Graphs.
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In order to establish the ground truth for our experiment, we
obtained 10 GB of real probing traffic retrieved from the Carna
botnet1 The latter orchestrated campaign is rendered as one of the
largest and most comprehensive IPv4 probing census ever. Subse-
quently, we presumed, as shown in Fig. 1, that 10 out of the 24
machines are infected and thus are generating their malicious
probing traffic towards the web service using TCP as the transport
protocol and 80 as the destination port number. We successfully
achieved this by substituting the IP addresses of the assumed
infected departmental machines with 10 IP addresses belonging to
10 unique sources of the Carna botnet that are probing that service.
To provide a realistic evaluation scenario, we now assume that we
have no knowledge about the infected departmental machines.
Subsequently, we generated a legitimate background traffic dataset
of 15 GB by leveraging the Security Experimentation EnviRonment
(SEER) tool set2 and randomly merged it (using tcpslice3) with the
malicious probing traffic dataset generated by those 10 IP addresses
(z8 GB). The newly created merged dataset (of 23 GB) could be
thought of as the network data generated by the departmental
machines and received by the edge server, where the proposed
approach has been deployed for inference and analysis.
Evaluation
By invoking the proposed approach on the merged dataset, the

Behavioral Service Graph and its corresponding maximum span-
ning tree were inferred as depicted in Fig. 2. From a performance
perspective, it is worthy to note that processing the 23 GB dataset
to generate the feature vectors as well as model the infected ma-
chines in complete and subgraphs and infer the niche of the
campaign required 8 min and 16 s using a commodity machine
with an Intel 3.4 GHz i7 processor with 16 GB of RAM. We believe
that this iteration of the implementation of the proposed ap-
proaches, which exploit the C libcpap library for network pro-
cessing and the C Boost Graph Library (BGL) for graph
manipulations, is quite efficient.

A number of observations could be extracted from the complete
graph (Fig. 2a). First, the number of assembled Behavioral Service
Graphs is accurate; the approach generated one complete graph
which is correct as the infected machines in the illustrated scenario
are probing only one service, namely, the web service. Second, the
number of nodes in this Behavioral Service Graph is also precise;
the approach inferred and correlated 10 infectedmachines which is
consistent with the number of infected departmental machines.
1 http://internetcensus2012.bitbucket.org/download.html.
2 http://seer.deterlab.net/trac.
3 http://sourceforge.net/projects/tcpslice/.
Third, after a semi-automated analysis and comparison that was
based on the logged probing IP traffic flows, we identified that all
the 10 machines that the proposed approach has identified are
indeed the same IP addresses of the infected departmental ma-
chines (i.e., the IP addresses of the Carna botnet). Therefore, based
on the latter three observations, we can claim that the proposed
approach yielded no false negative or false positive from a threat
modeling perspective.

However, to further fortify the latter claim in an attempt to
generalize it as it applies to various network scenarios, we per-
formed several other experiments. Specifically, we were interested
in evaluating the accuracy of the proposed approach as (1) the
number of probed services increase in diversity and (2) as the
number of infected machines scale up in a given network. Thus, we
first augmented the number of probed services, one at a time, up to
100 various probed TCP and UDP services. The results disclosed that
the number of generated Behavioral Service Graphs remained
accurately reflecting the number of probed services. Moreover, to
verify the scalability of the proposed approach, we increased the
number of ground truth infected machines, by slots of 100, up to
1000 machines. The outcome disclosed consistent accuracy in
terms of constructed number of nodes and the positive infection
state of such nodes. Such experiments relatively validate the ac-
curacy and the scalability of the proposed scheme. Nevertheless, it
is important to mention that by further executing scalability ex-
periments exceeding the 1000 threshold, the proposed approach
started to suffer from false positives and negatives in terms of
infection status of those created nodes. Specifically, we quantified
that as the number of machines increased by slots of 500 machines
beyond that 1000 threshold, the false positive rate increased by
around 2% and the false negative rate increased by around 1.5%, on
average. While we did not have a chance to fully analyze this issue,
our initial investigation showed that it could be an implementation
issue with the employed graph library. Future work will attempt to
address this scalability finding and will also investigate a distrib-
uted implementation of the proposed graph-theoretic notions.

We were further concerned about the quality of the formed
cluster provided by the complete Behavioral Service Graph. Since
such a graph is supposed to correlate the nodes based on their
infection state as well as their behaviors, we thought it would be
significantly beneficial to assert such grouping of nodes by
employing another approach. To achieve this, we relied on an un-
supervised, machine learning data clustering technique, namely,
the k-means algorithm (Hartigan and Wong, 1979). Typically, the
standard k-means algorithm requires, as apriori knowledge, the
number of clusters k. However, since our aim is to provide a robust
evaluationmethodology, we relied on an approach to automatically
determine the optimal number of clusters. In particular, we lever-
aged the Calinski-Harabasz criterion (Cali�nski and Harabasz, 1974)

http://internetcensus2012.bitbucket.org/download.html
http://seer.deterlab.net/trac
http://sourceforge.net/projects/tcpslice/


Fig. 3. Validating the clustering capability of the complete Behavioral Service Graph.
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that operates by systematically verifying various number of clusters
and subsequently recording the variances between and within the
formed clusters. To determine the optimal number of clusters, the
metric should be maximized with respect to k; the optimal number
of clusters is the solution with the highest Calinski-Harabasz index
value. To apply the k-means on the infected 10 nodes as previously
inferred by the complete Behavioral Service Graph, we (1) retrieved
their probing traffic from the merged dataset using a simplistic
tcpdump4 filter, (2) extracted their packet features5 using the open
source jNetPcap API6 and (3) compiled the extracted features into a
unified data file and then applied the k-means algorithm in
conjunction with the Calinski-Harabasz metric on such file. The
outcome of the k-means execution is illustrated in Fig. 3.

Motivated by Ding and He (2004) that asserted 1) that the
relaxed solution of the k-means clustering, specified by the cluster
indicators, could be given by the principal components from the
Principal Component Analysis (PCA) technique (Shlens, 2014) and
2) that the PCA subspace spanned by the principal directions is
identical to the cluster centroid subspace, Fig. 3 reveals the formed
cluster on the first two principal axes of the PCA. One can notice the
formation of one, and only one, relatively strongly correlated
cluster. This result strongly advocates that the nodes possess strong
similarity characteristics. In summary, such an outcome that was
generated by approaching the clustering problem from another
perspective, indeed validates the grouping capability of the infec-
ted machines (i.e., nodes) that is provided by the constructed
complete Behavioral Service Graph of Fig. 2a.

Thus, up to this stage, an enterprise forensic investigator can
leverage such precise and actionable evidence for prompt detec-
tion, containment and mitigation of such infected machines from
the concerned network. Intuitively, an investigator can also isolate
such machines to collect additional evidence by monitoring their
network and system activities for auxiliary data analysis or
extraction of digital artifacts. The latter evidence could be exploited
to generate signatures of attacks or for thoroughly analyzing a
specific security phenomenon of interest.
Campaign niche inference
Extracted from the Behavioral Service Graph, the enterprise

subgraph that is depicted in Fig. 2b also provides noteworthy in-
ferences. First, it was able to generate formal forensic evidence that
clustered the machines into a well-defined orchestrated infected
campaign. Recall, that the formality arises from the fusion of the
bots behavioral similarly as previously extracted by the data ana-
lytics of Section Data behavioral analytics coupled with the graph
theoretical notion of a maximum spanning tree. Second, and more
importantly, the approach was able, by leveraging Erd}os-R�enyi
random graphs, to infer the niche members of that infected
campaign. Fig. 2b shows those nodes with marked ‘Xs’. In fact, the
proposed approach revealed that these two nodes render the cre-
ation of the campaign. Thus, in theory, these nodes should have
caused the creation of the campaign in the first place. To validate
this, we manually investigated those IP addresses by going back to
the Carna botnet dataset. Our investigation showed that these two
IP addresses are used as root nodes in the botnet to infect other
machines for propagation purposes. The latter fact was validated as
these two nodes were among the top 3 nodes to generate most of
the probing traffic in the dataset. The latter formal forensic evidence
could be promptly exploited by investigators to prioritize the
4 http://www.tcpdump.org/.
5 Adopted from Alshammari and Zincir-Heywood (2011), where they have been

shown to produce distinguishing characteristics when applied on network data.
6 http://jnetpcap.com/.
eradication of those two nodes in order to seize the expansion of the
campaign on their networks. This would indeed significantly limit
any present or future possible sustained collateral damage and any
symptoms of infection that could be caused by the infected bots.

Scenario 2: global capability

In the previous scenario, we have demonstrated how the pro-
posed scheme can be exploited to operate within the context of an
enterprise network. In this section, we port the approach to a global
scale and elaborate on how it can be employed tomonitor, infer and
distribute Internet-scale forensic intelligence. Thus, in this scenario,
the approach is envisioned to operate in a model similar to what is
dubbed as a global Security Operation Center (SOC). Typically, such
operational centers have access to significant various real-time and
raw data streams from around the globe. They often exploit such
data for analysis, correlation and generation of intelligence that
would be distributed to concerned parties for alert and mitigation
purposes. Such centers were initially formed as global independent
entities to combat an increasing trend of external (in contrary to
internal) threats and attacks.

Thus, in this second scenario, Behavioral Service Graphs are
postulated to be deployed as an additional forensic capability in one
of those SOC centers. In this context, we operate the scheme by
investigating darknet data. In a nutshell, a darknet (also commonly
referred to as a network telescope) is a set of routable and allocated
yet unused IP addresses (Moore et al., 2004). It represents a partial
view of the entire Internet address space. From a design perspective,
a darknet is transparent and indistinguishable compared with the
rest of the Internet space. From a deployment perspective, it is
rendered by network sensors that are implemented and dispersed on
numerous strategic points throughout the Internet. Such sensors are
often distributed and are typically hosted by various global entities,
including Internet Service Provides (ISPs), academic and research
facilities, and backbone networks. The aimof a darknet is to provide a
lens on Internet-wide malicious traffic; since darknet IP addresses
are unused, any traffic targeting them represents anomalous unso-
licited traffic. Such traffic (i.e., darknet data) could be leveraged to
generate various cyber threat intelligence, including inferences and
insights related to probing activities; some of the probes of an
infected machine, while probing the Internet space, will also hit the
darknet and thus will be subsequently captured. Recall, that the
probing machine, while spraying its probes, can not avoid the dar-
knet as it does not have any knowledge about its existence. Further, it

http://www.tcpdump.org/
http://jnetpcap.com/
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is extremely rare if not impossible for a probing source to have any
capability dedicated to such avoidance (Cooke et al., 2006).

To this end, we have access to real and logged darknet data
provided by the Center for Applied Internet Data Analysis (CAIDA)7

We leverage a sample of such data to evaluate the proposed
approach as it is deployed in the SOC model.

The ground truth
Similar to the previous scenario, there exists a need to have a

concrete knowledge about a ground truth to properly evaluate the
proposed scheme. For this purpose, in this scenario, we rely on a
reported Internet-scale event related to a large-scale probing
campaign. Particularly, on October 10, 2012, the Internet Storm
Center (ISC) received a report of a probing campaign targeting
Internet-wide SQL servers8 This incident was also interestingly
corroborated by Dshield. Dshield data comprises of millions of
intrusion detection log entries gathered daily from sensors
covering more than 500,000 IP addresses in over 50 countries.
Further, the ISC report noted that the probing campaign involved
more than 9000 distributed sources, which aim at exploiting that
service. We rely on the occurrence of such disclosed incident as the
ground truth as we proceed in our evaluation.

Evaluation
From our darknet data repository, we extract one week of data

(z80 GB) pertaining to the period of October 4th to October 11th,
2012. The aim is to employ the proposed approach on such data to
evaluate the scheme's capability and effectiveness in disclosing
insights related to that reported campaign. By executing the pro-
posed approach on the extracted probing traffic from our darknet
dataset, the outcome demonstrated that one of the Behavioral
Service Graphs was indeed able to infer and correlate around 800
unique sources9 targeting the SQL service. Further, the behavioral
analytics (1) showed strong behavioral similarity between those
sources and (2) inferred that those sources were indeed bots, thus
providing strong evidence that such campaign was triggered from
Internet-wide infected machines. The latter inferred bots could be
visualized as in Fig. 4, where nodes that are close to each other
represent a maximized behavioral similarity ðPbsÞ (recall Section
Behavioral Service Graphs). Additionally, it might be interesting to
mention that the proposed approach deemed 84 bots as the niche
of the campaign by leveraging the approach of Section Friends of
the enemy stay closely connected: inferring infected campaigns.

Thus, provided with such forensic evidence, SOC analysts can
demand an immediate take-down of those 84 bots to limit the
expansion of such campaign on the global Internet. In addition,
they can promptly notify concerned parties to employ mitigation
approaches against the abuse of SQL servers. From a performance
perceptive, using the same commodity machine as in the previous
experiment, this SOC experiment required approximately 39min to
process the 80 GB darknet dataset in order to build the Behavioral
Service Graph coupled with its corresponding subgraph, and to
infer the niche of the infected campaign.

Proposed approach: limitations & possible improvements

In this section, we discuss several limitations of the proposed
approach and attempt to provide some remediation strategies.
7 http://www.caida.org/data/overview/.
8 https://isc.sans.edu/forums/diary/ReportsþofþaþDistributedþInjectionþScan/

14251/.
9 Since the monitored darknet space is a/8, we are only able to see a portion of

the campaign using that dataset.
First, the approach analyzes probing activities (for promptness
reasons) by leveraging a number of behavioral analytics to infer
enterprise and Internet-wide bots. Intuitively here, there is a need
to further fortify the infection evidence. To this end, as mentioned
in Section Data behavioral analytics, we are attempting to devise an
approach, which endeavors to correlate perceived probing activ-
ities from such probing sources with malware traffic samples to
corroborate the bot infection evidence as well as to attribute the
inferred infected machines to a specific malware family. Another
related issue is that bots or infected machines that do not generate
probing activities will not be captured by the proposed approach. In
this context, literature approaches which offer host-based solutions
to infer maliciousness could be employed as a (preprocessing)
complementary detection capability. Second, the proposed
approach of Section Friends of the enemy stay closely connected:
inferring infected campaigns infers the niche of the campaign by
heuristically selecting the nodes/edges that possess a similarity
behavior above a threshold indicated by the Erd}os-R�enyi random
graphs. To this end, it would be very interesting to find a formal
mathematical relation to infer and extrapolate the number of such
nodes (beyond just the analyzed dataset) as a function of the
amount of generated traffic, the geographic distribution of the
inferred nodes and the similarity behavioral metrics. Finally, the
proposed approach is still experimental. We are currently
continuing its development to render it operational in an auto-
mated fashion in both of the experimented scenarios. In this
context, the pinpointed scalability issue will also be thoroughly
investigated.

Related work

In this section, we briefly review the related work on two topics,
namely, anomaly detection using graphs and data forensic
approaches.

Anomaly detection using graphs

Wang et al. (2014b) approached the problem of anomaly
detection as a change-point hypothesis constructed on a time series
of graphs. The authors proposed a stochastic model that is based on
the use of scan statistics; metrics that can extract normal traffic and
compare it to anomalous traffic. Their model was evaluated and
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validated on real email data. In another work, Brdiczka et al. (2012)
proposed an approach for proactive detection of insider threats by
combining structural anomaly detection from social and informa-
tion networks, and psychological profiling of individuals. Their
approach is specifically tailored to detect anomalies in multi-player
online games. In a different work, Hassanzadeh et al. (2012) pro-
posed a framework for analyzing the effectiveness of various graph
theoretic properties in detecting anomalous users on online social
networks. Their empirical evaluations demonstrated that such
derived properties are indeed accurate in modeling anomalous
behaviors. Further, Ding et al. (2012) employed bipartite graph
representation of network flow traffic coupled with community
detection techniques in an attempt to infer malicious sources. To
achieve such a task, the authors further employed hard thresholds
and heuristics derived from empirical evaluations. Furthermore,
Wang and Daniels (2008) proposed a graph-based approach to
correlate and reason about generic network security incidents.

Data forensic approaches

The author in Guarino et al. (2013) explored the challenges of
data forensics as applied to digital investigation. He elaborated on
how techniques and algorithms that are typically used in data
analysis could possibly be adapted to the unique context of digital
forensics. The author discussed various approaches ranging from
managing evidence tomachine learning techniques, and analysis of
forensic disk images and network traffic dumps. In an alternate
work, Zhu (2011) proposed a data-driven iterative algorithm for
discovering network attack patterns via a feedbackmechanism. The
author claimed that the algorithm is fully unsupervised as it does
not require user-defined thresholds. Simulations were conducted
to validate the accuracy of the proposed approach. Moreover, in
Garfinkel (2012), Garfinkel presented numerous lessons learned
from writing digital forensic tools and managing a 30 TB digital
evidence corpus. Specifically, the author elaborated on the tech-
nical difficulties analyzing such data, the possible hardware and
software issues that could be faced, and how to accurately retain
the extracted evidence. The author concluded by stating some
present issues related to data forensic approaches, namely, di-
versity of data that needs to be analyzed, the size of the datasets,
and the mismatch between the technical skills of investigators and
the difficulty level of the work.

The proposed approach of this work is unlike the above two
categories as (1) it tackles a different problem rendered by inferring
enterprise and Internet-wide infections, (2) uniquely scrutinizes
probing activities using a set of behavioral analytics to promptly
infer infections, (3) employs a new concept of similarity service
graphs to infer malicious campaigns, (4) exclusively exploits graph
theoretic notions such as the maximum spanning tree and Erd}os-
R�enyi random graphs to infer the niche of the infected campaign
and (5) it has been empirically evaluated using two real and sig-
nificant datasets in two diverse deployment scenarios.

Concluding remarks

Network forensic approaches that endeavor to contribute, both,
scientifically and operationally, are particularly rare. Motivated by
this, in this work, we have devised Behavioral Service Graphs, a
data-driven approach that is able to effectively process, analyze and
correlate large volumes of network traffic to promptly generate
formal, highly-accurate and actionable network forensic evidence.
Such evidence could indeed be leveraged by investigators to infer
enterprise and Internet-wide infected machines, which operate
within the context of malicious campaigns. Empirical evaluations
with real data under two different deployment scenarios have
verified the accuracy and effectiveness of the proposed approach in
terms of inferring the infections as well as pinpointing the niche of
such campaigns. We hope that the forensic community could
consider the approach as a building block for complementary
analysis and investigation.

As for future work, other than tackling the issues mentioned in
Section Proposed approach: limitations & possible improvements,
we are currently exploring the problem of campaign analysis; the
ability to infer what the probing infected bots will eventually
execute after finalizing their initial probing activities. We aim to
achieve the latter by correlating the generated inferences from this
work with other data sources, including but not limited to, passive
DNS, and public intrusion and firewall logs. Additionally, wewill be
leveraging our proposed approach in the near future to conduct a
large-scale Internet measurement study using CAIDA's darknet
data to report and analyze on simultaneously active Internet-scale
malicious campaigns.
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