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Abstract—The task of generating network-based evidence to
support network forensic investigation is becoming increasingly
prominent. Undoubtedly, such evidence is significantly imperative
as it not only can be used to diagnose and respond to various
network-related issues (i.e., performance bottlenecks, routing
issues, etc.) but more importantly, can be leveraged to infer
and further investigate network security intrusions and infec-
tions. In this context, this paper proposes a proactive approach
that aims at generating accurate and actionable network-based
evidence related to groups of compromised network machines.
The approach is envisioned to guide investigators to promptly
pinpoint such malicious groups for possible immediate mitigation
as well as empowering network and digital forensic specialists to
further examine those machines using auxiliary collected data or
extracted digital artifacts. On one hand, the promptness of the
approach is successfully achieved by monitoring and correlating
perceived probing activities, which are typically the very first
signs of an infection or misdemeanors. On the other hand, the
generated evidence is accurate as it is based on an anomaly
inference that fuses big data behavioral analytics in conjunction
with formal graph theoretical concepts. We evaluate the proposed
approach as a global capability in a security operations center.
The empirical evaluations, which employ 80 GB of real darknet
traffic, indeed demonstrates the accuracy, effectiveness and sim-
plicity of the generated network-based evidence.

Index Terms—Probing, Infections, Graphs, Threat modeling,
Big data analytics, Network forensics

I. INTRODUCTION

Undeniably, network forensics presents a rich problem
space that typically deals with the collection, preservation,
analysis and presentation of network-based knowledge. It is
often exploited to generate actionable insights and intelligence
that could be effectively leveraged by investigators. The latter
is especially factual when attempting to fingerprint, assess
and mitigate network security intrusions and misdemeanors.
However, this attempt is recurrently hindered by various
current technical challenges that face network forensics.
First, network forensic analysts are significantly overwhelmed
by huge amounts of low quality evidence. Such evidence
is often generated from intrusion detection systems that
are known to suffer from elevated levels of both false

positives and negatives [1], rendering the combined task
of identifying relevant information and attributing the true
malicious entity extremely challenging, if not impossible.
Second, most network forensic approaches are passive or
reactive, employ manual ad-hoc methods and are strenuously
time consuming [2, 3]. This makes the generated evidence
relatively obsolete to be acted upon in a timely manner and
most certainty decreases its reliability and wastes valuable
resources. Third, contemporary cyber attacks are getting
more sophisticated than ever and continue to operate in an
excessively coordinated and distributed manner. To this end,
network forensic science is relatively lagging behind such
advancement in the attacks. Further, most current network
forensic practices do not support distributed inference, and if
they do, they force the analysts to go through an error-prone
agonizing process of correlating dispersed unstructured
evidence to infer a specific security incident.

In essence, the presented research and development work
attempts to answer the following question: How can we
design an approach that is able to effectively process, analyze
and correlate large volumes of network traffic to generate,
in a very prompt manner, formal, highly-accurate and
actionable network forensic evidence that could be leveraged
to infer infected machines, and simultaneously possesses
the capability to practically operate in different deployment
scenarios?

This paper attempts to answer the above. Specifically, the
major contributions of this paper could be summarized in the
following:
• Presenting Behavioral Service Graphs, a novel approach

that aims at providing investigators/analysts, network ad-
ministrators and/or security operators with network foren-
sic evidence related to infected machines. The approach
models the probing sources that show evidence of infec-
tion as graphs. By exploiting ancillary graph theoretic
concepts such as the maximum spanning tree and Erdős-
Rényi random graphs, the approach is able to infer and
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correlate distributed groups of infected machines (i.e.,
campaigns). The approach is prompt since it exploits
probing activities to rapidly infer infection. Further, the
inferred group of infected machines possesses the min-
imum number of members to formally claim that such
group is a campaign. This idea is especially imperative
as this will allow actionable thwarting of campaigns as
soon as there exist evidence of their construction.

• Empirically evaluating the proposed approach using a
significant real dataset. The output concur that the ex-
tracted inferences exhibit noteworthy accuracy and can
generate significant, accurate and formal forensic insights
that could be used for prompt mitigation and to facilitate
further analysis.

The road-map of this paper is as follows. In the next section,
we survey the related work on various concerned topics. In
Section III, we elaborate on the proposed approach. In Section
IV, we empirically evaluate the proposed approach and verity
its accuracy and insights. Advantages, limitations and possible
improvements related to the proposed approach are highlighted
in Section V. Finally, concluding remarks are provided in
Section VI.

II. RELATED WORK

In this section, we briefly review the related work on two
topics, namely, anomaly detection using graphs and big data
forensic approaches.

Anomaly detection using graphs: Wang et al. [4]
approached the problem of anomaly detection as a change-
point hypothesis constructed on a time series of graphs.
The authors proposed a stochastic model that is based on
the use of scan statistics; metrics that can extract normal
traffic and compare it to anomalous traffic. Their model
was evaluated and validated on real email data. In an
another work, Brdiczka et al. [5] proposed an approach for
proactive detection of insider threats by combining structural
anomaly detection from social and information networks,
and psychological profiling of individuals. Their approach
is specifically tailored to detect anomalies in multi-player
online games. In a different work, Hassanzadeh et al. [6]
proposed a framework for analyzing the effectiveness of
various graph theoretic properties in detecting anomalous
users on online social networks. Their empirical evaluations
demonstrated that such derived properties are indeed accurate
in modeling anomalous behaviors. Further, Ding et al. [7]
employed bipartite graph representation of network flow
traffic coupled with community detection techniques in an
attempt to infer malicious sources. To achieve such a task,
the authors further employed hard thresholds and heuristics
derived from empirical evaluations.

Big data forensic approaches: The author in [8] explored
the challenges of big data as applied to digital investigation.
The proposed approach elaborated on how techniques and
algorithms that are typically used in big data analysis could

possibly be adapted to the unique context of digital forensics.
The author discussed various approaches ranging from
managing evidence via Map-Reduce to machine learning
techniques, and analysis of big forensic disk images and
network traffic dumps. In an alternate work, Zhu [9] proposed
a big data iterative algorithm for discovering network attack
patterns via a feedback mechanism. The author claimed that
the algorithm is fully unsupervised as it does not require
apriori user-defined thresholds. Simulations were conducted
to validate the accuracy of the proposed approach. Moreover,
in [10], Garfinkel presented numerous lessons learned from
writing digital forensic tools and managing a 30 TB digital
evidence corpus. Specifically, the author elaborated on
the technical difficulties analyzing such data, the possible
hardware and software issues that could be faced, and
how to accurately retain the extracted evidence. The author
concluded by stating some present issues related to big data
forensic approaches, namely, diversity of data that needs to be
analyzed, the size of the data sets, and the mismatch between
the technical skills of investigators and the difficulty level of
the work.

The proposed approach of this work is unlike the above
two categories as (1) it tackles a different problem rendered
by inferring Internet-wide infections, (2) uniquely scrutinizes
probing activities using a set of behavioral analytics to infer
infections, (3) employs a new concept of similarity service
graphs to infer campaigns of infected machines, (4) exclu-
sively exploits graph theoretic notions such as the maximum
spanning tree and Erdős-Rényi random graphs to infer the
niche of the infected campaign and (5) it has been empirically
evaluated using a real dataset in a unique deployment scenario.

III. PROPOSED APPROACH

In this section, we describe and detail the rationale and
employed steps of the proposed approach. In summary, the
proposed approach (1) fingerprints and extracts probing activ-
ities from perceived network traffic, (2) applies the proposed
behavioral analytics to generate feature vectors related to the
infected probing sources, (3) constructs Behavioral Service
Graphs that model those probing machines and (4) manip-
ulates such graphs to infer distributed campaigns possessing
minimum members of infected machines. The latter four steps
are detailed next.

A. Fingerprinting Probing Activities
Motivated by the fact that probing activities precede the

majority of attacks [11] coupled with the rationale that such
activities are the very first signs of any infection [12], the
proposed approach leverages the latter to extract probing
activities generated from infected machines. To achieve this,
we leverage our previously proposed approach as detailed in
[13].

B. Big Data Behavioral Analytics
In order to capture the behaviors of the inferred probing

sources, we exploit our previously proposed big data behav-



ioral analytics as described in [14]. Such analytics take as input
the previously extracted probing sessions and outputs a series
of behavioral characteristics related to the probing sources.
Such characteristics include the nature of the probing sources,
their embedded traffic patterns, their techniques used to probe
their destinations, in addition to miscellaneous inferences such
as their rates, probing ports and destinations’ overlap.

C. Behavioral Service Graphs

We model the probing machines that show signs of
infection (i.e., those inferred as bots using the behavioral
analytics) coupled with their feature vectors using what we
refer to as Behavioral Service Graphs. Such graphs are of
the form G = (N,E) where N represents the set of infected
probing sources/machines (i.e., nodes) and E characterizes
the edges between such nodes. It is worthy to mention that
G is an undirected complete graph [15], with weights on the
edges representing the probability of behavioral similarity
(Pbs) computed by piecewise comparisons between the
previously inferred feature vectors of each of the nodes.

Another feature of such graphs is that they are designed to
provide additional forensic evidence related to what service
is being probed. The service is rendered by the destination
port number inferred from the detected probing packets.
Hence, the word ‘Service’ in Behavioral Service Graphs.
Therefore, in essence, each constructed graph is actually
modeling infected machines, their behavioral similarity and
what specific network service is being probed. This aims at
providing the investigator with additional inference about the
activities of the current infections and to warn about possible
future attacks that could specifically abuse that service.

In summary, Behavioral Service Graphs allow the prompt
inference of bot infected machines by solely analyzing their
probing activities. Further, they extend such inferences to
automate the amalgamation of evidence from distributed
entities as well as providing auxiliary valuable insights
related to the behaviors of the infected machines and their
possible intended actions.

D. Friends of the enemy stay closely connected:
Inferring Infected Campaigns

Previous work [16] demonstrated that coordinated bots
within a campaign probe their targets in a similar fashion.
Indeed, Behavioral Service Graphs were initially engineered
to naturally and intuitively support the latter; they cluster
the infected machines targeting the same service and they
combine their feature vectors (and their similarly probability)
for further analysis. The proposed approach executes two
steps to retrieve the minimum number of infected machines
to deem a group of infected machines as a campaign.

First, given a complete Behavioral Service Graph G =
(N,E), the approach extracts a subgraph G′ = (N ′, E′)

where N ′ = N and E′ ⊆ E. This aims at reducing the
number of edges while maximizing the behavior probability
between the infected machines (i.e., nodes). To achieve this
task, we employ the graph theoretic concept of a maximum
spanning tree [17] by implementing a slightly modified version
of Kruskal’s algorithm [18]. Although there exists a plethora
of approaches for the creation of maximum spanning trees, this
algorithm was the basis of many and is abundantly available
in numerous tool sets.

Second, to understand the structure of the subgraph formed
by members of a campaign on a Behavioral Service Graph,
suppose that there are m bots (i.e., infected machines) in
the network, and therefore there are m corresponding nodes
on the graph. Let the set X = {X1, X2, · · · , Xm} denote
these nodes and Pe denote the probability of having an
edge between any given Xi and Xj , for i 6= j where 1
≤ i ≤ m and 1 ≤ j ≤ m. Since Pe would exist with an
equal and a random probability given any pair of of Xi and
Xj , the subgraph formed by the nodes X1, X2, · · ·, Xm

on a Behavioral Service Graph is indeed an Erdős-Rényi
random graph [19, 20], where each possible edge in the graph
possesses an equal probability of being created.

One interesting property shown by Erdős and Rényi is
that, Erdős-Rényi graphs have a sharp threshold of edge
probability for graph connectivity [20]. Simplified, if the
edge-probability is greater than such threshold, then all of the
nodes produced by such a model will be strongly connected.
Erdős and Rényi have shown that the sharp connectivity
threshold is ths = lnθ

θ , where θ is the number of nodes
in the graph. The proposed approach exploits this neat
graph theoretical property; given the previously extracted
maximum spanning tree subgraph, the approach eliminates
all nodes/edges whose bot-edge probability (i.e., behavioral
similarity Pbs) is less than ths, deeming the rest of the nodes,
given such formal forensic evidence, as the minimum number
of infected machines forming a campaign.

In conclusion, according to the random peer selection
model, the niche members of the same infected campaign are
expected to be closely connected to each other on a subgraph
extracted from Behavioral Service Graphs.

IV. EMPIRICAL EVALUATION

In this section, we port the approach to a global scale
and elaborate on how it can be employed to monitor, infer
and distribute Internet-scale forensic intelligence. Thus,
in this scenario, the approach is envisioned to operate in
a model similar to what is dubbed as a global Security
Operation Center (SOC). Typically, such operational centers
have access to significant various real-time and raw data
streams from around the globe. They often exploit such
data for analysis, correlation and generation of intelligence
that would be distributed to concerned parties for alert and
mitigation purposes. Such centers were initially formed as
global independent entities to combat an increasing trend of



external (in contrary to internal) threats and attacks.

Thus, in this scenario, Behavioral Service Graphs are pos-
tulated to be deployed as an additional forensic capability
in one of those SOC centers. In this context, we operate
the scheme by investigating darknet data. In a nutshell, a
darknet (also commonly referred to as a network telescope)
is a set of routable and allocated yet unused IP addresses
[21]. It represents a partial view of the entire Internet address
space. From a design perspective, a darknet is transparent and
indistinguishable compared with the rest of the Internet space.
From a deployment perspective, it is rendered by network
sensors that are implemented and dispersed on numerous
strategic points throughout the Internet. Such sensors are
often distributed and are typically hosted by various global
entities, including Internet Service Provides (ISPs), academic
and research facilities and backbone networks. The aim of a
darknet is to provide a lens on Internet-wide malicious traffic;
since darknet IP addresses are unused, any traffic targeting
them represents anomalous unsolicited traffic. Such traffic (i.e.,
darknet data) could be leveraged to generate various cyber
threat intelligence, including inferences and insights related to
probing activities; some of the probes of an infected machine,
while probing the Internet space, will also hit the darknet and
thus will be subsequently captured. Recall, that the probing
machine, while spraying its probes, can not avoid the darknet
as it does have any knowledge about its existence. Further, it is
extremely rare if not impossible for a probing source to have
any capability dedicated to such avoidance [22]. To this end,
we utilize real darknet data that is provided by the Information
Marketplace for Policy and Analysis of Cyber-risk & Trust
(IMPACT) program.

A. The ground truth

There exists a need to have a concrete knowledge about a
ground truth to properly evaluate the proposed scheme. For this
purpose, in this scenario, we rely on a reported Internet-scale
event related to a large-scale probing campaign. Particularly,
on October 10, 2012, the Internet Storm Center (ISC) received
a report of a probing campaign targeting Internet SQL servers.
This incident was also interestingly corroborated by Dshield.
Dshield data comprises of millions of intrusion detection
log entries gathered daily from sensors covering more than
500,000 IP addresses in over 50 countries. Further, the ISC
report noted that the probing campaign involved more than
9,000 distributed sources which aim at exploiting that service.
We rely on the occurrence of such disclosed incident as the
ground truth as we proceed in our evaluation.

B. Evaluation

From our darknet data repository, we extract one week of
data retaining to the period of October 4th to October 11th,
2012. The aim is to employ the proposed approach on such
data to evaluate the scheme’s capability and effectiveness in
disclosing insights related to that reported campaign.

Fig. 1: The proposed approach revealing the bots of the SQL
probing campaign

By executing the proposed approach on the extracted prob-
ing traffic from our darknet dataset, the outcome demonstrated
that one of the Behavioral Service Graphs was indeed able
to infer and correlate around 800 unique sources target-
ing the SQL service. Further, the behavioral analytics (1)
showed strong behavioral similarity between those sources
and (2) inferred that those sources were indeed bots, thus
providing strong evidence that such campaign was triggered
from Internet-wide infected machines. The latter inferred bots
could be visualized as in Figure 1. Additionally, it might be
interesting to mention that the proposed approach deemed 84
bots as the niche of the campaign by leveraging the approach
of Section III-D.

Thus, provided with such forensic evidence, SOC analysts
can demand an immediate take-down of those 84 bots to
limit the expansion of such campaign on the global Internet.
Additionally, they can promptly notify concerned parties
to employ mitigation approaches against the abuse of SQL
servers.

V. PROPOSED APPROACH: ADVANTAGES, LIMITATIONS &
POSSIBLE IMPROVEMENTS

Other than generating prompt and formal forensic evidence,
the proposed approach can also be deemed as being simple.
We define simple as being (1) reliable, (2) cost-effective, (3)
highly-performant and (4) stackable. Indeed, the proposed
approach is reliable as it repetitively yielded accurate results in
different deployment scenarios under numerous experimental
setups. Further, it demonstrated scalability characteristics
and still maintained precision. Further, the approach is
cost-effective as it possesses the capability of operating
on commodity machines without requiring any additional



hardware or software utilities. This idea is particularly true
when the approach is executed as a SOC capability providing
forensic intelligence to other Internet enterprises, alleviating
the latter from the burden of implementation scenarios and
their corresponding supplementary costs. We also deem the
proposed approach as highly-performant. In fact, it takes only
several minutes to build Behavioral Service Graphs coupled
with their corresponding subgraphs, and to infer the niche of
the infected campaigns. Last but not least, the approach could
be used as a building block (as input) for other approaches
or as a complementary scheme to provide auxiliary forensic
evidence.

However, it is definitely realistic to acknowledge several
limitations of the proposed approach. First, although the
approach analyzes probing activities by leveraging behavioral
analytics to infer enterprise and Internet-wide bots, there exists
a need to further fortify the infection evidence. To this end,
we are currently devising an approach that would correlate
perceived probing activities from such bots with malware
samples to corroborate the infection evidence as well as to
attribute the inferred infected machines to a specific malware
family. Second, currently, the proposed approach of Section
III-D infers the niche of the campaign by heuristically select-
ing the nodes/edges that possess a similarity behavior above
a threshold indicated by the Erdős-Rényi random graphs. It
would be interesting to find a formal mathematical computa-
tion to infer the number of such nodes as a function of the
overall campaign nodes and the similarity behavior. Finally,
the proposed approach is still experimental. We are working
on rendering it operational in real-time in several deployment
scenarios.

VI. CONCLUDING REMARKS

We have devised Behavioral Service Graphs, an approach
that is able to effectively process, analyze and correlate large
volumes of network traffic to generate, in a very prompt man-
ner, formal, highly-accurate and actionable network forensic
evidence that could be leveraged by investigators to infer
Internet-wide infected machines. Rigorous empirical evalua-
tions with real data under a SOC deployment scenario indeed
verified the accuracy and effectiveness of the approach. We
hope that the forensic community could consider the ap-
proach as a building block for complementary analysis and
investigation. As for future work, other than tackling the
issues mentioned in Section V, we are working on campaign
analysis; the ability to infer what the probing infected bots will
eventually execute after finalizing their probing activities. We
aim to achieve the latter by correlating the generated inferences
from this work with other data sources (i.e., passive DNS,
public intrusion and firewall logs, etc.). These future objectives
ultimately aim at providing extended network-based evidence
to further support investigations.
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